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Abstract: 
An adaptive control system is built which controlling the cutting force and maintaining 
constant roughness of the surface being milled by digital adaptation of cutting parameters. 
The paper discusses the use of combining the methods of neural networks, fuzzy logic and 
PSO evolutionary strategy (Particle Swarm Optimization) in modeling and adaptively 
controlling the process of end milling. An overall approach of hybrid modeling of cutting 
process (ANfis-system), used for working out the CNC milling simulator has been prepared. 
The basic control design is based on the control scheme (UNKS) consisting of two neural 
identificators of the process dynamics and primary regulator. Experiments have confirmed 
efficiency of the adaptive control system, which is reflected in improved surface quality and 
decreased tool wear. 
  
Key Words: Modeling, Artificial Intelligence, End-milling, Adaptive force Control, 
                     Optimisation. 
  
1. INTRODUCTION 
 
The use of computer numerical control (CNC) machining centers has expanded rapidly 
through the years. A great advantage of the CNC machining center is that it reduces the skill 
requirements of machine operators. However, a common drawback of CNC end milling is 
that its operating parameter such as spindle speed or feedrate is prescribed conservatively 
either by a part programmer or by a relatively static database in order to preserve the tool.  
As a result, many CNC systems run under inefficient operating conditions. For this reason, 
CNC machine tool control system, which provides on-line adjustment of the operating 
parameters, is being studied with interest. These systems can be classified into three types: 
a geometric adaptive compensation (GAC) system; an adaptive control optimization (ACO) 
system; and an adaptive control constraints (ACC) system. 

GAC systems enhance part precision by applying real time geometric error compensation 
for imprecision caused by varying machine temperature, imprecise machine geometry, tool 
wear and other factors [1]. 

However, due to the difficulty in on-line measurement of tool wear and machine tool 
temperature, there are no commercial GAC systems available [2].  
ACO systems and ACC systems enhance productivity by applying an adaptive control 
technique to vary then machining variables in real time [3]. ACO systems set up the most 
effective cutting condition for the present cutting environment. For this purpose, ACO 
systems require on-line measurement of tool wear. Due to this reason, few, if any, ACO 
systems are used in practice [4-6]. 

ACC systems increase productivity by maximizing one or many machining variables within 
a prescribed range bounded by process and system constraints [7]. The most commonly 
used constraints in ACC systems are the cutting force, spindle current and cutting torque. 
The operating parameters are usually feedrate and spindle speed. 
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Unfortunately, adaptive control alone cannot effectively control cutting forces. There is no 
controller that can respond quickly enough to sudden changes in the cut geometry to 
eliminate large spikes in cutting forces. Therefore, we implement on-line adaptive control in 
conjunction with off-line optimization.  

The optimization is performed with algorithm developed by Zuperl [8]. In our AC system, 
the feedrate is adjusted on-line in order to maintain a constant cutting force in spite of 
variations in cutting conditions. 

The paper is organised as follows. The following section briefly describes the overall 
cutting force control strategy. Section four covers the CNC milling simulator.  
Section five describes the experimental equipment of adaptive control system. Finally, 
sections six and seven present experimental results, conclusions, and recommendations for 
future research. 
 
2. SYSTEM FOR OFF-LINE OPTIMIZATION AND CUTTING FORCE CONTROL  
 
The overall force control strategy consists of optimizing the feedrates off-line, and then 
applying on-line adaptive control during the machining process. The basic idea of this design 
is to merge the off-line cutting condition optimization algorithm and adaptive force control 
(Fig. 1). Based on this new combined control system, very complicated processes can be 
controlled more easily and accurately compared to standard approaches. The objective of 
the developed combined control system is keeping the metal removal rate (MRR) as high as 
possible and maintaining cutting force as close as possible to a given reference value. 
Combined control system is automatically adjusted to instant cutting conditions by adaptation 
of feedrate. When spindle loads are low, the system increases feeds above and beyond pre-
programmed values, resulting in considerable reductions in machining time and production 
costs. When spindle loads are high the feed rates are lowered, safeguarding cutting tool from 
damage and breakage.  
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Figure 1: Feedrate Override Percentage in Closed Loop System 

 
Sequence of steps for on-line optimization of the milling process is presented below. 
• The recommended cutting conditions are determined by ANfis (adaptive neuro-fuzzy 

inference system) models, which are basic elements of the software for selecting the 
recommended cutting conditions. 
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• Optimization of recommended cutting conditions by PSO optimization. 
• The pre-programmed feed rates determined by off-line optimization algorithm are sent to 

CNC controller of the milling machine.  
• The measured cutting forces are sent to neural control scheme.  
• Neural control scheme adjusts the optimal feedrates and sends it back to the machine.  
• Steps 1 to 3 are repeated until termination of machining. 
 

The adaptive force controller adjusts the feedrate by assigning a feedrate override 
percentage to the CNC controller on a 4-axis Heller, based on a measured peak force (see 
Fig.1). The actual feedrate is the product of the feedrate override percentage (DNCFRO) and 
the programmed feedrate. If the software for optimization of cutting conditions was perfect, 
the optimized feedrate would always be equal to the reference peak force. In this case the 
correct override percentage would be 100%. In order for the controller to regulate peak force, 
force information must be available to the control algorithm at every 20ms. Data acquisition 
software (LabVIEW) and the algorithm for processing the cutting forces are used to provide 
this information. The optimization time by the use of off-line optimization algorithm based on 
feedforward neural network, is equal to 0,001s. The combined control system returns the 
cutting force value to the desired value level within four or less iteration at the latest. 
 
3. SELF- LEARNING CONTROL SCHEME  
 
The fundamental control principle is based on the Feed-forward neural control scheme 
(UNKS) consisting of three parts (Fig. 2). The first part is the loop known as external 
feedback (conventional control loop). The feedback control is based on the error between the 
measured (Fm) and desired (Fref) cutting force. The primary feedback controller is a neural 
network (NM-R) which imitates the work of division controller.  
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Figure 2: Feed-Forward Neural Control Scheme (UNKS) 
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The second part is the loop connected with neural network 1 (NM-1), which is internal 
model of process dynamics. It acts as the process dynamics identifier. This part represents 
an internal feedback loop which is much faster than the external feedback loop as the latter 
usually has sensory delays. 

The third part of the system is neural network 2 (NM-2). The NM-2 learns the process 
inverse dynamics. 

The UNKS operates according to the following procedure. The sensory feedback is 
effective mainly in the learning stage. This loop provides a conventional feedback signal to 
control the process. During the learning stage, NM-2 learns the inverse dynamics. As 
learning proceeds, the internal feedback gradually takes over the role of the external 
feedback and primary controller. Then, as learning proceeds further, the inverse dynamics 
part will replace the external feedback control. The final result is that the plant is controlled 
mainly by NM-1 and NM-2 since the process output error is nearly zero. This is an adaptive 
control system controlling the cutting force and maintaining constant roughness of the 
surface being milled by digital adaptation of cutting parameters. In this way it compensates 
all disturbances during the cutting process: tool wear, non-homogeneity of the workpiece 
material, vibrations, chatter etc. 
 
4. CNC MILLING SIMULATOR 
 
A CNC milling simulator is used to evaluate the controller design before conducting 
experimental tests. The CNC milling simulator tests the system stability and tunes the control 
scheme parameters. The simulator consists of a neural force model, a feed drive model and 
model of elasticity (Fig. 3) 

The neural model predicts cutting forces based on cutting conditions and cut geometry as 
described by Zuperl [9] and Cus [10]. The feed drive model simulates the machine response 
to changes in desired feedrate. The elasticity model [11] represents the deflection between 
the tool and the workpiece. Model is adapted from [12]. The system elasticity is modeled as 
static deflection of the cutter [13]. 
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 Figure 3: CNC Milling Simulator 
 
4.1 The Feed Drive Model 
 
The feed drive model was determined experimentally by examining responses of the system 
to step changes in the desired feed velocity. The best model fit was found to be a second-
order system with a natural frequency of 3 Hz and a settling time of 0.4sec. Comparison of 
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experimental and simulation results of a velocity step change from 7mm/sec to 22mm/sec is 
shown on Fig. 4.  
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Figure 4: Comparison of Actual and Simulated Federate 
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Figure 5: Comparison of simulated and experimental resultant force 
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The feed drive model, neural force model and elasticity model are combined to form the 
CNC milling simulator. Simulator input is the desired feedrate and the output is the X, Y 
resultant cutting force. 

The cut geometry is defined in the neural force model. The simulator is verified by 
comparison of experimental and model simulation results. A variety of cuts with feedrate 
changes were made for validation. The measured and simulation resultant force for step 
change in feedrate from 0.05mm/tooth to 2 mm/tooth is presented in Fig. 5. The experimental 
results correlate well with model results in terms of average and peak force. The obvious 
discrepancy may be due to inaccuracies in the neural force model, and unmodeled system 
dynamics. 
 
4.2 Simulator of Cutting Dynamics 
 
To realise the on-line modelling of cutting process, a standard BP neural network (UNM) is 
used based on the popular back propagation learning rule. During preliminary experiments it 
proved to be sufficiently capable of extracting the force dynamics model directly from 
experimental machining data. It is used to simulate the dynamics of cutting process. The 
UNM for modelling needs eight input neurons: for federate (f), cutting speed (vc), radial and 
axial depth of cut (AD / RD), type of machined material, hardness of the machined material, 
cutting tool diameter (D), and tool geometry. The ANN registers the input data only in the 
numerical form therefore the information about the tool, cutting geometry and material must 
be transformed into numerical code. The geometry of the cutter is indicated with an 8-digit 
systematization code containing the data on the cutting edge shape, rake angle, free angle, 
tip radius, base material, cutting coating and length of the cutting edge.  

The output from the UNM are cutting force components, therefore three output neurons 
are necessary. For simplification of the milling simulator the neural network is so adapted 
that during prediction overlooks all input parameters except feeding. During simulation most 
input vector parameters do not change (e.g. cutter diameter and geometry, material etc.). 
The detailed topology of the used NN with optimal training parameters is shown in Fig. 6. 
Optimal UNM configuration contains 5, 3 and 7 neurons in hidden layers. 
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Figure 6: Comparison of Simulated and Experimental Resultant Force 
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5. EXPERIMENTAL EQUIPMENT AND DATA ACQUISITION SYSTEM 
 
The data acquisition equipment consists of dynamometer, fixture and software module. The 
cutting forces were measured with a piezoelectric dynamometer (Kistler 9255) mounted 
between the workpiece and the machining table. The interface hardware module consists of 
a connecting plan block, analogue signal conditioning modules and a 16 channel A/D 
interface board (PC-MIO-16E-4). In the A/D board, the analogue signal will be transformed 
into a digital signal so that the LabVIEW software is able to read and receive the data. With 
this program, the three axis force components can be obtained simultaneously, and can be 
displayed on the screen for further analysis. The feedrate override percentage variable 
DNCFRO is available to the control system at a frequency of 1 kHz Communication between 
the control system and the CNC machine controller is accomplished over RS-232 protocol.  
 
6. EXPERIMENTAL TESTING OF ADAPTIVE CONTROL SYSTEM  
 
To examine the stability and robustness of the proposed control strategy, the system is first 
analysed by simulations using LabVIEW´s simulation package Simulink [14].  
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Cutting conditions: Feedrate: 0.08mm/zob, Cutting speed: 
v=80m/min, Pre-programmed axial depth of cut AD=2 mm, 
Radial depth of cut RD =4mm, Fref=280N, Result: Fig.: 8a 

Test_B 
Proposed adaptive 
control system 

Starting feedrate: 0.08mm/zob, Allowable adjusting rate: 
00.8 - 0.20 mm/zob, Cutting speed: v=80m/min, Axial 
depth of cut AD=2-11mm, Radial depth of cut: RD =4mm, 
Fref=280N, Result: Fig.: 8b 

b) 
Experiment 2: 
Irregular workpiece 
profile 
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Cutting conditions: Feedrate: 3mm/s, Spindle speed: 
2400min-1, Axial depth of cut AD=2 -5mm, Radial depth of 
cut: RD =16mm, Fref=650N 

Test_B 
Proposed adaptive 
control system 

Starting Feedrate: 2.5mm/s, Allowable adjusting rate of 
federate: 2.5-11mm/s, Spindle speed: 2400min-1, Axial 
depth of cut AD=2 -5mm, Radial depth of cut: RD =16mm, 
Fref=650N, Result: Fig.: 9 

 
 

Figure 7: Plan of Experiments; a) Cutting Conditions for Prismatic Workpiece.  
b) Cutting Conditions for Irregular Workpiece Profile 
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Figure 8: Experiment-2; Machining of Irregular Profile by Off-Line Optimizing of Cutting 
Conditions and Adaptive Adjusting of Federate 
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Figure 9: Experiment-2; Machining of Irregular Profile by Off-Line Optimizing of Cutting 

Conditions and Adaptive Adjusting of Federate 
 

Then the system is verified by two experiments on a CNC milling machine for Ck 45 and 
16MnCrSi5 XM steel workpieces with variation of axial cutting depth (Experiment 1- prismatic  
workpiece; experiment 2- workpiece with irregular profile, see Fig. 7).  

Details of the experimental conditions and the dimensions of the workpiece are shown in 
Fig. 7. Feedrates for each cut are first optimized off-line, and then machining runs are made 
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with controller action. The first test is conventional cutting with the constant feedrate 
(Test_A). In the second test, the proposed combined system was applied in milling to 
demonstrate its performance (Test_B). 

The parameters for adaptive control are the same as for the experiments in the 
conventional milling. Fig. 8 is the response of the cutting force and the feedrate when the 
cutting depth is changed (experiment-1). It shows the experimental result where the feedrate 
is adjusted on-line to maintain the maximal cutting force at the desired value. The second 
experiment is machining of irregular workpiece consisting of five straight cuts with different 
axial and radial depths of cut. The results of the second experiment using optimized 
feedrates and UNKS are presented in Fig. 9. 
 
7. RESULTS AND DISCUSSION 
 
Comparing the Fig. 8a to Fig. 8b, the cutting force for the neural control milling system is 
maintained at about 250N, and the feedrate of the adaptive milling system is close to that of 
the conventional milling from point C to point D. From point A to point C the feedrate of the 
adaptive milling system is higher than for the classical CNC system, so the milling efficiency 
of the adaptive milling is improved. The time analysis for conventional and adaptive control 
system has been curried out.  

By adaptive control system of time saving of 40% with one cut was reached. The 
complete machining requires 15 cuts; thus machining of a simple workpiece is shortened for 
155 seconds. The second experiment with small and large step changes is run to test system 
stability over a range of cutting conditions. The system remains stable in all experiments, 
with little degradation in performance. In the second experiment, the adaptive controller 
increases the feedrates to obtain peak forces close to 650N.  

The slower response of the neural control scheme is noticeable at the beginning of cut 
one and three. The results reached are in accordance with the objectives of researches, 
according to which the controlled cutting force must not deviate from the desired value for 
more than 10%.  

As compared to most of the existing end milling control systems [15,16], the proposed 
adaptive system has the following advantages:  
• The computational complexity of UNKS does not increase much with the complexity of 

process;  
• The learning ability of UNKS is more powerful than that of conventional adaptive 

controller;  
• UNKS has a generalisation capability [17];  
• Insensitive to changes in workpiece geometry, cutter geometry, and workpiece material; 
• Cost-efficient and easy to implement;  
• Mathematically modeling-free. 
 
8. CONCLUSION 
 
In this paper, a hybrid adaptive control algorithm that controls feedrate is proposed to 
regulate the cutting force. 

On the basis of the cutting process modeling, off-line optimization and feed-forward neural 
control scheme (UNKS) the combined system for off-line optimization and adaptive 
adjustment of cutting parameters is built. This is an adaptive control system controlling the 
cutting force and maintaining constant roughness of the surface being milled by digital 
adaptation of cutting parameters.  

In order to check the applicability of the adaptive control algorithm, cutting experiments 
were carried out under various cutting conditions, different tool diameters and different work 
materials. The results show that the developed adaptive control algorithm has good stability 
as well as excellent applicability behavior. 
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