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Abstract: 
 

The aim of this paper is to present the use of critical points for adaptive local slicing in rapid 
prototyping, especially Stratoconception. First, we introduce the context of use of critical 
points in rapid prototyping. Then, we define them on surfaces and triangular meshings and 
extend this definition to other geometric entities, such as edges, facets and faces. Finally, we 
use the critical points to optimise usual slicing. We compare this new slicing with the usual 
one on a few models manufactured by Stratoconception. 
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1. CONTEXT 
 

Rapid prototyping allows the physical manufacturing of a numerical 3D model, with time 
saving compared to the classical manufacturing process. Rapid prototyping processes are 
used to make models layer by layer, each of them being manufactured in 2D [4]. 

Visually, critical points look like basin's bottoms, tops of hill and mountain's passes (Fig. 
1). If we slice the model at their heights, the pieces of the model obtained can be made more 
efficiently with adapted parameters (accuracy, speed, slicing direction...). For example, each 
of the hills of a massif can be isolated by setting a cutting plane at the height of the basin's 
bottom of the massif. 

In this paper, we present an optimization of rapid prototyping manufacturing, especially 
Stratoconception, by using critical points. 
 
2. DEFINITION OF CRITICAL POINTS 
 
2.1 Different definitions on surfaces 
 

The use of critical points is a classic tool in rapid prototyping [11], they might be defined in 
several ways. 

 

Definition by topologic variations of the intersecting curves 
Let Σ  be a surface of Euclidian space 

3E . 
Let O  be a point of the space, called origin. 

Let iΠ  be a plane with normal τ , such that i iM∀ ∈Π , .i iOM hτ =
uuuur

. Thus we call ih  the 

height of the plan iΠ  thanks to the slicing direction τ  with respect to the origin O . 

The result of the slicing of Σ  by a plane iΠ  is a set of contours iC . 
When computing the intersection of a plane with a surface, the change of topology from 

the set of curves iC  to the set 1iC +  is the expression of the presence of a critical point: 

• if there is a local maximum at the height ih , a curve disappears (Figure 1, a)  

• if there is a local minimum at the height ih , a curve appears (Figure 1, b)  
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• if there is a saddle point, two curves disappear at the same times as two others appear 
(Figure 1, c) 
 

Definition by looking at the height of the neighbourhood 
Let iζ  be the neighbourhood of the point ip . 
Thus, we obtain :  

• ip  is a local maximum , .i iv Ov hζ τ⇔ ∀ ∈ <  
• ip  is a local minimum , .i iv Ov hζ τ⇔ ∀ ∈ >  
• ip  is a saddle point ⇔  there is a partition of iζ  in at least four distinct parts so that they 

are alternatively below and above ih . 
 

 
 

Figure 1: Three types of critical points : local maximum (a), local minimum (b) and saddle (c). 
 
Connection with the Gauss curvature 

 

The Gauss curvature [5] allows us to detect critical points of a model without considering 
a specific direction. The literature contains several definitions and computations techniques 
of the Gauss curvature, particularly [2, 12, 13]. There is a relation between critical points and 
points with extreme curvature. For example, hyperbolic points, with negative curvature, 
correspond to saddle points. Within the framework of this work, we don't need to compute 
Gauss curvature to detect critical points because we have to consider a given direction. 
Consequently, points with extreme curvature are more numerous than useful critical points. 
Also if we use points with extreme curvature to set automatically slicing plane. This requires 
an additional filtering, which is time consuming and prone to approximation. 
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2.2 Adaptation of the definition on STL mesh 
 

The STL format, standing for STereoLithography, is the de facto standard used to represent 
models in the rapid prototyping world. An STL model can be considered as a polyhedron of 

3E  with triangular faces. 
Classically, an STL model is defined as a finite set of triangles, called facets. A facet 

comprises three non-aligned points called vertices, and three edges joining vertices by pairs. 
We have to adapt the second definition of critical points on an STL mesh. Thus, we 

define the idea of neighbourhood iζ  on an STL mesh. The neighbours of a vertice pi  are the 
vertices of the mesh connected to pi  through one edge. 

We consider that the height hp  of p  is its z  component in a three-dimensional axes 
system. So, the slicing direction τ  and the unit vector z

r  merge together. 
Consequently, we obtain :  

• pi  is a local maximum ⇔  the whole of its neighbours is below pi  (Figure 2, a)  
• pi  is a local minimum ⇔  all its neighbours are upon pi  (Figure 2, b) 
• pi  is a saddle ⇔  we count an even number, more or equal to 4, of edges connecting pi  

to neighbours alternating above and below it (Figure 2, c) 
 

(a) (b)

(c)

Slicing 
direction

Critical point

Point upon critical height

Point below critical height

Slicing 
direction

Slicing 
direction

 
 

Figure 2: Three types of critical points on an STL mesh : local maximum (a), local 
minimum (b) and saddle (c). 

 

There is a problem with STL mesh. Indeed it results from the numerical chain and can 
be disturbed for various reasons (in particular by digitizing). Consequently, the mesh is full of 
insignificant critical points, e.g. not very deep basin's bottom or not very high top of hill. It is 
then necessary to filter the critical points we find in order to preserve only the most important. 
Several solutions are possible, some of them relying on the analysis of the stability of the 
critical points by using persistence diagrams [1, 6, 10] or interval persistence [9]. 

In our work, we set up a few filters looking at minimal variations between critical points 
and the area of the cutting contour obtained by slicing the model at a height given by a 
critical point. 
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3. CONTRIBUTION : EXTENSION OF CRITICAL POINTS CONCEPT 
 

We try to cut the model orthogonally to the slicing direction at the height of critical points. For 
this, the traditional definition of critical points on STL model is quickly limited. 

Figure 3 shows this problem: if you look at the plane edges, i.e. which have their two 
vertices at the same height, each vertice individually is not critical, because its neighbours 
are above or at the same height. On the other hand, if we regard the whole of the edges as a 
vertice, this one is a basin's bottom, since its neighbours are all above it. 

 

Critical point

Point upon critical heightSlicing 
direction

 
 

Figure 3: Extension of critical point concept to a whole of edges. 
 

To extend the concept of critical point to edges, facet and faces (group of planar edges 
and facets, neighbours ones of the others), we need to identify the possible grouping of 
planar entities (Figure 4, red zone). Various methods exist, among which the variational 
shape approximation [6]. More simply, we try to proceed by propagation starting from a facet 
orthogonal to the slicing direction. We then gather vertices which are neighbours of the 
planar zone, i.e. vertices joined to vertices of the planar zone and not belonging to it (Figure 
4, blue vertices). Then, on this whole of vertices, we use the same indexing as for a critical 
point on an STL mesh (§ 2). 
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Figure 4: Extension of local maximum definition to plateau. 
 

There are two types of intersecting curves obtained by slicing the model at a given 
height: outer and inner. An outer contour includes one or more inner contours. When a 
critical zone is limited by an outer contour including inner contours, a specific classification 
for this zone must be set (Table I). 

Critical points are a classic tool in rapid prototyping [11], they might be define in several 
ways. We present the one using the notion of neighbourhood. 

 
4. APPLICATION FOR LOCAL ADAPTIVE SLICING IN STRATOCONCEPTION 
 

Stratoconception is a Rapid Prototyping process with solid/solid layers. It consists in the 
decomposition of the piece by calculating a set of elementary layers called "strata" and by 
placing reinforcing pieces and inserts in the strata. The elementary layers are displayed and 
manufactured by rapid micromilling or laser-cutting. The strata are then assembled with 
inserts to rebuild the final object (Figure 6). 
 



Houtmann, Delebecque, Barlier : Adaptive Local Slicing in Stratoconception by Using Critical Points 
 
 

64 

CAD / STL file

Micromilling / Laser unit

Assembling unit

Final 
prototype

3-D machining by rapid 
micromilling or laser cutting 3-D Strata placing 

with inserts

Layer decomposition
- Selecting the plane
- Selecting the pitch
- Selecting the inserts

Laying out
- Selecting the sheet size
- Selecting the material

Stratoconcept software

 
 

Figure 6: Principles of Stratoconception [3]. 
 
4.1 Different types of slicing: constant, adaptive and local adaptive 
 

Constant slicing 
It is the slicing classically used in rapid prototyping. We cut the model with a constant step ς  
choosen by the user (Fig. 7, a). That is the cutting planes are regularly spaced without taking 
the model into account. 
Adaptive slicing 
This slicing consists in the adaptation of the slicing step ς  according to the slope of the 
model at a given height. For this, we look at the slope of the facets in comparison with the 
slicing direction τ . This slicing allows to save slicing when the model is vertical and to add 
ones when needed (Figure 7, b). Adaptive slicing is commonly used in Stratoconception [8]. 
Local adaptive slicing 
If there are several independent contours after a slicing at a given height, it is due to the 
model which is composed by several parts at this height. Adaptive local slicing consists in 
adapting the slicing step to each identified part of the model individually and not to its whole 
(e.g. the cylinder and the half sphere Fig. 7, c) [14, 15].  

The birth and death of these entities can be underline by critical points. Therefore they 
can help to make use adaptive local slicing (Algorithm 1). 

(b)(a) (c)
 

 

Figure 7: Different types of slicing: constant (a), adaptive (b) and local adaptive (c). 
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Algorithm 1.  Adaptive local slicing in Stratoconception by using critical elements : 
  
1. Detection of the plane elements (facets and edges)  orthogonal to the slicing direction    
2. Grouping of these elements in zones by propagation with a planar tolerance 
3. For each identified zone (composed by one or more elements) 

(a) Computation of the type of the zone regarding its neighbourhood 
(b) If it is a critical zone (local minimum or saddle) 

i. Mark the elements of the zone (facets, edges and vertices) as critical  
ii. Set a cutting plane at this height 

4. For each vertice of the STL 

(a) Computation of its type regarding its neighbourhood 
(b) If it is a critical vertice (local minimum or saddle) 

i. Mark the vertice as critical 
ii. Set a cutting plane at this height 

5. Filtering of the planes 

(a) If the difference in height between cutting plane is below a threshold 

i. Keep the plane with the maximum cutting contours area 

6. Compute the slicing of the model by taking into account the critical points and adapting 
the slicing step to the parts of the model isolated by the critical slicing (e.g. the cylinder 
and the half sphere Figure 7, c) 

 
4.2 Examples and savings 
 

We use seven models (Figure 8) to show the results of local adaptive slicing by using critical 
points and to quantify savings in term of the length of manufacturing path. These models are 
either mechanical, i.e. made with simple geometric entities (planes, cylinders, drilling...) and 
eventually with symmetries, or artistic, which are free form models. 
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(a) (b)

(c)

(d)

(e)

(g)
(f)  

 

Figure 8: Models for tests with cutting planes automatically set by local adaptive slicing 
algorithm. 

 
The main advantage of the use of local adaptive slicing is the saving of 25 to 92% in 

manufacturing path length against usual constant step slicing (Table I and Figure 9). 
Regarding adaptive slicing, the saving is not so marked. It depends mainly on the 

model's geometry. The most important saving is 51% high with the model Figure 8, a. The 
reason is that after critical slicing the cylinder becomes independent from the half sphere and 
can therefore be made with one cutting contour only. 

 
Table I: Manufacturing path length with different slicings. 

 
 

Model
Size (mm)

Facets
Slicing accuracy

(mm)
Method of slicing

Manufacturing path 
length 
(mm)

Savings towards 
constant slicing

(%)
Piéce type Constant 64 117

( a ) 84*44*60 Adaptive 10 528 83,58
864 Local adaptive 5 129 92,00

Support Constant 197 152
( b ) 116*135*97 Adaptive 167 405 15,09

3 392 Local adaptive 133 880 32,09
Eurocast Constant 259 546

( c ) 85*193*72 Adaptive 140 057 46,04
10 770 Local adaptive 129 733 50,01

Horse Constant 292 027
( d ) 84*183*153 Adaptive 253 490 13,20

39 238 Local adaptive 162 050 44,51
Standford bunny Constant 50 181

( e ) 65*46*61 Adaptive 43 278 13,76
64 126 Local adaptive 36 396 27,47

Hippo Constant 208 030
( f ) 71*201*102 Adaptive 148 293 28,71

154 986 Local adaptive 140 309 32,55
Pharaon Constant 72 366

( g ) 60*145*51 Adaptive 58 524 19,13
166 372 Local adaptive 53 966 25,43

0,50

0,50

0,50

0,50

0,50

0,50

0,50
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Figure 9: Manufacturing path length with different slicings (among which our automatic 
local adaptive slicing) with test models. 

 
5. CONCLUSION 
 

The critical points presented and redefined above are useful and efficient when applied to 
rapid prototyping, especially with Stratoconception. Thanks to them, we can easily and 
robustly make use of local adaptive slicing on STL models. 
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