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Abstract: 
This paper presents a theoretical and experimental investigation into the stability of a 
cantilever boring bar under regenerative cutting conditions. As this cutting tool is flexible, the 
regenerative chatter variation often occurs and causes several problems which not only limits 
productivity of cutting process, but also affects surface finish, cause premature tool failure 
and reduce dimensional accuracy of the machined part. Its prediction is then important as a 
guidance to the machine tool user for an optimal selection of cutting conditions, resulting in 
maximum chip removal rate without this undesirable self excited vibration.  

While boring, the chatter vibration may occur in the through-thickness direction of 
workpiece. The vibration changes removal cross section of workpiece in the present cut and 
furthermore in the next cut. This change in cross section produces dynamic cutting force 
variation. When this dynamic cutting force excites the mechanical structure and grows up the 
previous vibration, this closed-loop instability leads to the regenerative chatter vibration. 

The boring bar is modeled at the tool point by a mass, spring and damper system free to 
move in the two mutually perpendicular directions. The solution of the non uniform 
equilibrium equation of motion of the cutting tool (boring bar) yielded a characteristic 
equation in a form of a fourth order polynomial with complex and variable coefficients. The 
stability of this complex polynomial is based on the Nyquist criterion. This allowed us to plot 
graphs of stability which indicated clearly that the cutting condition has a decisive influence 
on the generation of chatter vibrations leading to the instability of cutting. The developed 
model is verified by cutting experiments, and it is expected that the computed results are in 
good agreement with the experimental one, and the analytical model is useful to optimize the 
cutting conditions for highly efficient cutting process. 
 
Key Words: Boring Process, Dynamic Stability, Regenerative Chatter Vibration, Cutting 
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1. INTRODUCTION 
 
The machining of metal is often accompanied by a violent vibration of workpiece and cutting 
tool known as chatter. It is recognised as self excited vibration generated in a closed loop 
system by variation of cutting forces caused by cutting process itself. It is a basic 
performance limitation of machine-tool, and affects surface finish, dimensional accuracy, tool 
life and machine-tool life [1], [2]. 

Therefore, for a given machining process, it is of great importance to have prior 
information of the conditions that lead to cutting instability and chatter.  

The main concern of the present work is to predict both analytically and experimentally 
the onset of chatter vibration in boring operation, and to determine the effects of the cutting 
conditions used on its dynamic behaviour. 
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Figure 1: Block diagram for regenerative chatter. 

 
This phenomenon has been analysed by combination of cutting process dynamic and the 

mechanical receptance of the boring bar in a closed feedback loop that instantaneously 
controls the tool-workpiece motion (Figure 1). 
 
2. SELF-EXCITED VIBRATION OF A BORING BAR 
 
2.1 Differential equations of the motion of a boring bar 
 
The authors have previously pointed out that the vibrations of a cutting tool while machining 
are considered to be bi-directional, because the tip tool trajectory is of elliptic form (Figure 2). 
The structural dynamics of the system is then represented by an equivalent two degrees of 
freedom (m, c, λ). The cutting force components are assumed to be function of both chip 
thickness and its displacement velocity ant the interaction of the other component. 
Otherwise, the two components are coupled [3], [4]. 
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Figure 2: Two degrees of freedom model of the boring bar while machining. 
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The differential equations of motion for such system under regenerative chatter conditions 
may be derived by reference to figure 2 as: 
                                     
                                                   mx cx x dFx′′ + ′ + = −λ                                                        (3) 
                                                  ′ ′′ + ′ ′ + ′ = −m y c y y dFyλ                                                     (4) 
 
Substituting: 
1: Equations (1) and (2) into (3), it becomes: 
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Taking its Laplace transform, we find: 
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2: Equations (2) and (3) into (4) it becomes: 
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Taking its Laplace transform, we find: 
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Matrix form of (6) et (8) is given by : 
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Solution of this homogenous system exists only if the determinant is equal to zero. The 
characteristic equation of the system under consideration can then be obtained by equating 
the determinant of the above matrix to zero. 
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Expanding this equation, we obtain a forth order polynomial equation in S, with complex and 
variable coefficients as: 
 

G(s) = A(s)S4 + B(s)S3 + C(s)S2 + D(s)S + E(s)=0                (10) 
 
Substituting S by jω,  with α1 = 0 into (10), equation G(jω) can be written in order to separate 
the reel  ℜe et imaginary ℑm parts. 
 

G(jω) = ℜe(G(jω)) + ℑm(G(jω))  
 

2.2 Stability charts of the boring bar system (stability criterion) 
  
According to the Nyquist criterion, the dynamic system under consideration will be stable 
only if the characteristic amplitude-phase-frequency of polynomial characterizing the transfer 
function of the system will not intercept the real axis in the interval (- ∞,-1) [5], [6], [7]. 

Figures 3 and 4 represent in the complex plane, the polar diagrams of the dynamic 
system for ∞ ranging from 0 to - ∞ for different values of the width of the cut b and the 
angular velocity N. 
 In each case we have draw three different curves characterizing the three different 
behaviours of the vibrating system. 

- The characteristic curve (1) does not intercept the real axis in the interval (-∞ ,-1): the 
system is then stable. 

- The system is in the limit of the stability when the characteristic curve (2) is tangent to 
the negative real axis, or when it intercepts with it at the critical point (0,-1). 

- The characteristic curve (3) intercepts the real axis in the interval (-∞ ,-1): the system 
is then unstable. 

 As it can be seen from the analysis of the characteristic equation of the system, the 
stability depends on the machining conditions and the dynamic characteristics of the rotating 
dynamic system. The stability of the system will therefore be assured only if: 
 
ℜe (G(jω))>-1  and   ℑm (G(jω))= 0   in the interval  (0<ω <+ ∞ ) 
 
As it is shown by Figure 3 and 4, the width of the cut has a significant influence on the 
behaviour of the system during the machining operation. For an angular velocity N =200 rpm, 
the threshold of stability is occurred for a cutting width equal to a bout 1mm and is 
independent of natural frequency of the bar. However for values of b=2.5mm, the cut 
becomes more stable for smaller cutting speed. But the value of N at which the threshold of 
chatter occurs depends on natural frequency as shown by figure 5 and 6. This phenomenon 
is probably due to the damping forces whose influence on the stability of the cut at high 
speeds is much more important than the width of the cut [8], [9].   
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Figure 3: Polar graph (b variable).    
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Figure 4: Polar graph (b variable).    
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Figure 5: Polar graph (N variable). 
 

 
 

Figure 6: Polar graph (N variable). 
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3. EXPERIMENTAL RESULTS 
 
3.1 Experimental equipment: 
 

- Workpiece : Tapered test pieces were used in order to obtain a continuous increase 
of the depth of cut (5% of conicity, 135mm of diameter and 50mm of thickness). The 
workpiece is rigidly linked to the machine-tools.  

- Cutting tool: Centered cutting tool “sandvik” type (TmaxP CNMG 120412) is used 
and rigidly fixed on a circular boring bar fixed with an overhang. 

- Displacement measurement: Proximity transducer, Bently Névada type. 
- Analysis equipment: This equipment is constituted by a signal analyzer (HP 3562A) 

and a memory drawing table (HP 7090A). 
 

b1 b2 b3
b4

b5

a a a

Ma
Mr

 
 

Figure 7: Variation cutting width. 
 
3.2 Results and discussion: 
 
As it can be seen in figure 8a and b, the amplitude of the chatter vibration increase with b. 
Nevertheless there exists critical cutting width at which sudden chatter vibrations occur. The 
variation of vertical vibration amplitude is more significant than that of horizontal vibration. 
 

 
Figure 8a: Effect of Continuous variation of   Figure 8b: Variation of amplitude of chatter 

cutting width on chatter vibration.     vibration with cutting width.   
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4. CONCLUSION    
 
Dynamic instability of the boring operation is a regenerative type. The analysis carried out to 
predict the regenerative instability has been confirmed. 
The theoretical analysis presented in this work for predicting the conditions of instability has 
been verified by the good agreement obtained with experimental results. 
The optimal cutting widths, for a stable machining, depend on the used cutting speed. At low 
cutting speeds, it has been found that the instability occurs at higher widths of cut. However, 
at higher cutting speeds, the instability may occur at low widths of cut. 
 
REFERENCES 
 
[1] Kato, S; Mariu, E (1974). On the cause of regenerative chatter due to workpiece deflection, 

transaction of the ASME, page 179-186 
[2] Moriwaki, T; Iwata, K (1976). In process analysis of machine tool  structure dynamics and 

prediction of machining chatter,  transaction of the ASME page 301-305 
[3] Szakovits, R.J; D'Souza, A.F (1976). Metal cutting dynamics with reference to primary chatter,   

transaction of the ASME page 258-264 
[4] Stone, B.J (1977). A stability analysis of single point machining with varying spindle speed, 

Applied. Mathematical  Modelling, vol.1 page 310-317 
[5] St´ep´an, G;  Kalm´ar-Nagy, T (1977). Nonlinear regenerative machine tool vibrations. In 

Proceedings of the 1997 ASME Design Engineering Technical Conferences, Sacramento, 
California, September 1997.  

[6] Corpus, W. T;  Endres, W. J. (2004). Added stability lobes in machining processes that exhibit 
periodic time variation, part 1: An analytical solution. Journal of Manufacturing Science and 
Engineering, 126:467–474 

[7] Corpus, W.T;  Endres W. J (2004). Added stability lobes in machining processes that exhibit 
periodic time variation, part 2: Experimental validation. Journal of Manufacturing Science and 
Engineering, 126:475–480 

[8] Bourdim, A ; Bourdim, M ;  Metalsi Tani, F ; Sahli,  A(2007). Etude et modélisation d’une 
opération de coupe dynamique ; CIFMA02 – IFCAM02,  14-16 Mai/May 2007, Allep – Syrie 

[9] Bourdim, A ; Bourdim, M ; Metalsi Tani, F ; Hamou, S (2007). la vitesse de coupe et  son 
influence sur le broutement 5ème Conférence Internationale « conception et production 
intégrées CPI’2007, 22-24 Octobre 2007, Ecole Mohammadia d’Ingénieur, Rabat - Maroc  

196 


	1. INTRODUCTION
	2. SELF-EXCITED VIBRATION OF A BORING BAR
	3. EXPERIMENTAL RESULTS
	4. CONCLUSION   
	REFERENCES

