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Abstract: 
In the real-world multi-period production/operations management (MP-POM) problems, the 
parameters must be estimated and they are frequently given by interval estimates.  But for 
most POM models, these interval estimates must be translated into single numbers.  This 
often results in errors and in the loss of a considerable amount of information. The purpose 
of this paper is to develop, apply, and illustrate a new fuzzy approach using fuzzy numbers to 
solve the interval MP-POM problem.  It consists of employing appropriate fuzzy numbers to 
represent the interval estimates in the multi-stage decision problems; using the operations of 
fuzzy numbers combined with dynamic programming to solve the problem; and determining 
the required minimum/maximum fuzzy number through ranking techniques. To demonstrate 
the application of this approach, three MP-POM problems with fuzzy costs and/or fuzzy 
demands are solved.  The main advantages of this approach are fuzzy representative 
solutions for the optimal production schedule and the minimum total cost in terms of interval 
units rather than single numbers.  This enables the production engineers and operations 
managers to manage the production flexibly and control the costs effectively. A significant 
original contribution of this research is the development of an effective technique to solve the 
fuzzy MP-POM problems that have not been addressed thus far. Suggestions for future 
research include extending the proposed general fuzzy approach to solve large scale 
multistage fuzzy problems using computers; and to solve problems with fuzzy goals and 
constraints defined in different spaces.    

Key Words: Multi-period Production Planning, Multi-period Production/Operations 
Management (MP-POM), Fuzzy Conditions, Scalar Demands, Fuzzy Demands, Scalar 
Costs, Fuzzy Costs, Crisp Dynamic Programming (CDP), Fuzzy Dynamic Programming 
(FDP) 

1. INTRODUCTION

Production/operations management (POM) has a significant impact on the economy of most 
firms. Because of its multi-period nature, POM must be planned before the beginning of 
production. However, the exact information needed is not available until the production 
events occur.   So in multi-period POM (MP-POM) problems, the future parameters must be 
estimated.  A frequently used method is to give them interval (range) estimates.  For almost 
all models, these interval estimates must be translated into single numbers.  This may result 
not only in errors, but also in the loss of a considerable amount of information.  Since fuzzy 
numbers can be used to overcome these difficulties, they offer an ideal approach for solving 
real-world MP-POM problems. 

The main purpose of this study is to find an effective method to solve the interval MP-
POM problems, while retaining all the original information.  The proposed technique is a 
general fuzzy multi-stage decision approach based on fuzzy numbers using a problem-
oriented point of view.  The effectiveness of this approach is illustrated through its application 
to solve three different fuzzy MP-POM problems – fuzzy costs and scalar demands; fuzzy 
demands and scalar costs; and fuzzy costs and fuzzy demands. The three MP-POM models 
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are solved by both the proposed fuzzy approach and the current crisp methods. The results 
are compared and contrasted to show the advantages of the proposed procedure.             

 
2. LITERATURE SURVEY 

 
There have been many publications in literature on MP-POM. Corsano et al. [1] presented a 
multi-period mixed integer nonlinear optimization model for multiproduct batch plants under 
seasonal and market fluctuations. Neiro and Pinto [2] optimized multi-period production 
planning models by mixed integer nonlinear programs under uncertain conditions of prices 
and demands. Safaei and Tavakkoli-Moghaddam [3] proposed an integrated mathematical 
model of the multi-period cell formation and production planning in a dynamic cellular 
manufacturing system to minimize costs through a mixed integer programming technique. 
Porkka et al. [4] used a mixed integer linear programming based capacitated lot sizing 
models that included carryovers incorporating set-up times with associated costs. Moreno et 
al. [5] employed a general multi-period optimization model for multi-product batch plants to 
maximize an economic function consisting of incomes and costs using mixed integer linear 
programming. Moreno and Montagna [6] utilized a linear general disjunctive programming 
model for multi-period production planning in a multi-product batch environment to maximize 
the expected net present value of the benefit under uncertainty in demands.    

El Hafsi and Bai [7] determined an optimal multi-period production plan for a single 
product over a finite planning horizon to minimize the total inventory and backlog costs by 
solving a nonlinear programming problem. Feylizadeh [8] integrated project management 
network and mathematical programming techniques to decrease the total cost by controlling 
the completion time in a multi-period multi-product production planning problem. Li et al. [9] 
derived an optimal solution structure by the dynamic programming approach for a joint 
manufacturing and remanufacturing system in a multi-period horizon.  

Yildirim et al. [10] devised a rolling-horizon approach based on solving the static problem 
at each time period for a stochastic multi-product production planning and sourcing problem. 
Filho [11] provided a stochastic optimization model with constraints on the production and 
inventory variables for a multi-product multi-period long-term production planning problem 
through Gaussian approximation.  

Kaminsky and Swaminathan [12] developed heuristics that utilize knowledge of demand 
forecast evolution for capacitated multi-period production planning. Kazancioglu and Saitou 
[13] applied a simulation based method to aid multi-period production capacity planning 
using a multi-objective genetic algorithm. Sox and Muckstadt [14] formulated an algorithm 
using Lagrangian relaxation for the finite horizon capacitated multi-period production 
planning problem with random demand for multiple products. Nagasawa et al. [15] introduced 
two algorithms, one with stationary demand and the other with seasonal demand, for 
determining the value of generalized planning horizon based upon a property of an analytical 
solution to a multi-period production planning problem. 

Kogan and Portougal [16] focused on the control decisions for multi-period aggregate 
production planning to minimize the expected total costs. Balakrishnan and Cheng [17] 
addressed cellular manufacturing under conditions of multi-period planning horizons with 
demand and resource uncertainties. Ryu [18] illustrated through numerical examples multi-
period planning strategies with simultaneous consideration of demand fluctuations and 
capacity expansion. 

The above publications on MP-POM required precise or stochastic data. However, in real 
life the data are usually available in imprecise terms. A realistic and better way to represent 
these imprecise data is to use fuzzy numbers. Thus, this situation in reality is a fuzzy 
problem. This paper attempts to solve the fuzzy MP-POM problem through the application of 
fuzzy multi-stage decision making processes. 
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3. PROBLEM DESCRIPTION AND SOLUTION METHODOLOGY 
 
Let the production cost in period t be  
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and the inventory holding cost  in period t be  

  ttt IhIK                                                                                                                        (2) 

Then the general MP-POM problem becomes:  
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tttt DPII  1  
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Maxt II 0  

TTt ,1,...,2,1   

where  
 Ct = total cost of production and inventory with the management horizon t = 1 to T  
 At = fixed production cost in period t  
 ct = variable unit production cost in period t  
 ht = unit inventory holding cost in period t  
 Pt = production in period t  
 PMax = maximum production capacity  
 Dt = forecasted demand in period t  
 It = inventory at the end of period t  
 IMax = maximum inventory capacity 
 
This problem can be solved by dynamic programming (DP). Based on the following 
properties of optimal solution   

01  tt PI  

tttttttt DDDDDDDP ,...,,,,0 211    

Wagner and Whitin (1958) developed a more effective MP-POM model using DP.  In this 
model the total cost of production and inventory over the period j to k is:  
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where Cjk = cost of production and inventory in period j+1 to satisfy demand in j+1, j+2,…, k. 
The global optima can be obtained by the following DP recursive equation:  

 jkjk CZ
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min    Tk ,...,2,1                                                            (5)     

At each stage of the recursion, we seek to minimize the combination of the cost of production 
and inventory between two regeneration points (j and k) and the optimal program up to j. The 
recursion is computed for k = 0 to T. 

In the real world MP-POM problem, the amounts of At, ct, ht, and Dt are estimated based 
on experience, expected value or other statistical techniques. These amounts must be 
approximated by single numbers, when we solve the problem by crisp DP. This type of 
approximation always loses some information. A better choice is to represent the estimated 
amounts by the use of fuzzy numbers. In this project, we solve three MP-POM problems with 
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estimated costs and demands by applying the general fuzzy approach based on the use of 
fuzzy numbers.   Specifically, we develop fuzzy MP-POM models by: (a) using appropriate 
triangular fuzzy numbers to represent the interval estimates At , ct , ht , Dt in equation (4); (b) 
employing the fuzzy number operations ‘(+)’ and ‘(.)’ to carry out the corresponding 
operations ‘+’ and ‘.’ in equations (4) and (5); and (c) applying the fuzzy number ranking 
method to complete the ‘min’ problems by both the crisp and fuzzy models. Then we 
compare the results to evaluate the advantages of the proposed fuzzy MP-POM approach 
over the current crisp approaches. 
 

4. MP-POM PROBLEM WITH FUZZY COSTS AND SCALAR DEMANDS 
 
Let us consider a firm making a production plan for a product over a management horizon of 
three periods with zero initial inventory. The information for this problem is given in Table I.  
 

Table I: The information of this problem. 
 

period t 
demand Dt  
(units) 

setup cost At  
($1000) 

unit cost ct 
($1000/unit) 

holding cost ht  
($1000/unit/period) 

1 10 (15,20,50) (2,3,6) 1 

2 30 (20,40,50) (l, 3, 4) 1 

3 30 (20,30,60) (2, 3, 5) 2 

In this table, the setup costs and variable unit costs are given by triangular fuzzy numbers representing the 
interval estimates.  

 
4.1 Solution by Crisp Dynamic Programming (CDP)  
 
To obtain the optimal production schedule by CDP, we translate the estimated numbers into 
single numbers as shown in Table II. 
  

Table II: To obtain the optimal production schedule by CDP. 
 

t Dt (units) At ($1,000) ct ($1000) ht ($1000) 

1 10 20 3 1 

2 30 40 3 1 

3 30 30 3 2 

 
In the above table, the most possible numbers are chosen as the approximated single 
numbers of the estimated intervals; all the other information is lost. 
 
Following the Wagner and Whitin [19] approach, we obtain: 

    5010320111011  DcACZ  

50*1 Z  

        17030130103202121112002  DhDDcACZZ  

Or     1803034050** 22211212  DcAZCZZ  

170*2 Z  

     3321321110303 DhDDhDDDcACZZ z
      

     
      32030130301303010320   

Or    32322211313 ** DhDDcAZCZZ      300301303034050   

Or  33322323 ** DcAZCZZ  )30(330170  290  

290*3 Z  

The minimum total cost is $290,000. The production schedule (Table III) is found by tracing 
the solution backwards.  
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290
3

*
Z

  

Produce 30 units in period 3 for period 3.  

170
2

*
Z

  

Produce 40 units in period 1for both periods 1 and 2.  

Table III: The production schedule. 
 

Period 1 2 3 

Production  40  0  30  

 
4.2 Solution by Fuzzy Dynamic Programming (FDP)  
 
Now the fuzzy numbers are employed to replace the translated single numbers in the above 
problem; to obtain the optimal production schedule by FDP, we use the general fuzzy 
approach and the Wagner and Whitin [19] approach. Using the data of Table I, we obtain:  
 

    111011 . DcACZ         10.6,3,250,20,15    110,50,35  

 110,50,35*1 Z  

         2121110202 . DhDDcACZZ   

             )30(140.6,3,250,20,15    320,170,125  

Or       22211312 .)( DcAZCZZ   

               30.4,3,145,40,20110,50,35   275,180,85  

  (125, 170, 320) = 205  

  (85, 180, 275) = 180  

180 < 205; (85, 180, 275) < (125, 170, 320)  

1

*

2

*
ZZ   (+)  C13 = (85, 180, 275) 

           32321321110303 . DhDDhDDDcACZZ 
      

     
        306070.6,3,250,20,15   560,320,245  

Or          3232211313 .** DhDDcZCZZ   

                     3013030.4,3,145,40,20110,50,35   425,300,145  

Or         33322323 .** DcAZCZZ   

                30.5,3,260,30,20275,180,85   485,300,165  

     375560,320,245030   CZ  

     290425,300,145131   CZ  

     316485,300,165232   CZ  

3

*
Z = (145, 300, 425) 

The production schedule (Table IV) is obtained by tracing the optimal fuzzy solution 
backwards. 

3

*
Z = (145, 300, 425)             Produce 60 units in period 2 for periods 2 and 3. 

1

*
Z = (35, 50, 110)                 Produce 10 units in period 1 for period 1.  
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Table IV: The production schedule. 
 

Period 1 2 3  

Production  10 60 0  

 
4.3 Comparison of the Two Solutions 
  
The production schedules obtained by CDP are different from those obtained by FDP. The 
total cost (205, 290, 530) by CDP is more than that (145, 300, 425) by FDP (Figure 1).  This 
difference in the above example is predicated upon whether a single crisp number or a fuzzy 
interval is used for A1.  Obviously it is more practical to specify that the estimated amount A1  

is about $20,000 with an upper limit of $50,000 and a lower limit of $15,000, as indicated by 
the fuzzy number A1 = (15000, 20000, 50000), rather than by a single number A1 = 20,000. 
Thus the production schedule obtained by FDP is more realistic than that obtained by CDP. 
Also, the production engineers or operations managers would require exactly $290,000, as 
per the schedule obtained by the crisp model. However, this is not the case, since the 
minimum total cost should be (205, 290, 530) thousand dollars in order to satisfy the 
forecasted demand of the management horizon. 

This fuzzy cost indicates that the total production cost is about $ 290,000, with an upper 
limit of $529,000 and a lower limit of $206,000. This will enable the production manager to 
give appropriate leeway for the total cost in the budget.  

Furthermore, the schedules obtained by the crisp and the fuzzy models are not 
necessarily different. In this example, the fuzzy number operations used are (i) addition of a 
scalar and a triangular fuzzy number; (ii) addition of two triangular fuzzy numbers; and (iii) 
multiplication of a triangular fuzzy number and a scalar. If all the fuzzy costs in the problem 
are symmetrical triangular fuzzy numbers and the demands are scalars, then the results after 
applying the above three operations are still symmetrical triangular fuzzy numbers, as proven 
by Kaufman and Gupta [20]. The main part of fuzzy number ranking method is the 
generalized mean, and the generalized mean of any symmetrical triangular fuzzy number, M 
= (a,b,c), is c; hence, if all costs in the POM problem are represented by symmetrical 
triangular fuzzy numbers or scalars, then the schedule obtained by the fuzzy model should 
be the same as that obtained by the crisp model. Thus the fuzzy model is an alternative to 
having to use single numbers in multi-period production planning. It provides a comparable 
or better schedule than the crisp model.  

 
 

Figure 1: Cost Comparison of Two Different Schedules. 
 

5. MP-POM PROBLEM WITH FUZZY DEMANDS AND SCALAR COSTS   
 
The data for this problem are given in Table V. In this example, the forecasted demands are 
fuzzy numbers, while the costs ct, At and ht are scalars.  
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Table V: The data for this problem. 
 

t tD  At ($1000) ct ($1000) ht ($1000) 

1 (5, 10, 20) 20 3 1 

2 (25, 30, 40) 40 3 1 

3 (20, 20, 40) 30 3 2 

 
5.1 Solution by Crisp Dynamic Programming (CDP)   
 
If we translate the estimated demands into single numbers and solve the problem by the 
Wagner and Whitin [19] approach, the data remain the same as shown in Table II, and the 
optimal schedule also remains the same as shown in Table III. 
 
5.2 Solution by Fuzzy Dynamic Programming (FDP) 
 
Here again, we combine the general fuzzy approach with Wagner and Whitin [19] approach 
and use all of the information given in Table 5 to solve this MP-POM problem. 

    111011 . DcACZ         20,10,5.320   80,50,35  

 80,50,35*1 Z  

                121121110202 .. DDDhDDcACZZ   

                                 20,10,540,30,2520,10,540,30,2520,10,5.320   

         255,170,120  

Or         22211212 . DcAZCZZ   

    
         40,30,25.34080,50,35   240,180,150  

   3/545020  CZ  

   3/570121  CZ  

    255,170,120
2

*
020  CZZ

                   

            

              

               

                   

 485,330,190

40,30,2520,10,540,30,2040,30,2520,10,5

20,10,540,30,2040,30,2520,10,5

40,30,2040,30,2520,10,5.320

.

..

213212

13211321110303













DDDDDh

DDDDhDDDcACZZ

Or                   23223222133 .)(.
1

*

1

*
DDDhDDcAZCZZ   

              40,30,2040,30,25.34080,50,35   

                40,30,2540,30,2040,30,25   

 415,300,215  

Or           333233 .
2

*

2

*
DcAZCZZ   

         40,30,20.330255,170,120    405,290,210  
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   3/1025
0

*
03 







 CZ  

   3/930
1

*
13 







 CZ  

   3/905
2

*
23 







 CZ  

   405,290,210
2

*

3

*
23 







 CZZ  

The production schedule (Table VI) is obtained by tracing the optimal fuzzy solution 
backwards. 
 

Table VI: The production schedule. 
 

Period 1 2 3 

Production  (30, 40, 60) 0 (20, 30, 40) 

 

3

*
Z = (

2

*
Z  (+) C23) = (210, 290, 405); Produce D3  = (20, 30, 40) units in period 3 for 

period 3.                       

2

*
Z = Z0 (+) C02) = (120, 170, 255); Produce D1 (+) D2 units in period 1 for both periods 1 

and 2. 
 
5.3 Comparison of the Two Solutions  
 
In this example, the results obtained by CDP and FDP are quite different. The production 
schedule obtained by the fuzzy model is represented by fuzzy numbers, which retain all the 
original information; but the schedule obtained by the crisp model is represented by a single 
number, which lost most of the original information. Also, the minimum total costs obtained 
by the crisp and the fuzzy models are similarly different.  

The above two differences are important and useful in practice. According to the 
schedule obtained by the crisp model, the firm must produce exactly 40 units in period 1 and 
30 units in period 3. However, in practice, this may not be necessary; also, it may require 
additional production time leading to increase in cost. 
 

6. MP-POM PROBLEM WITH FUZZY COSTS AND FUZZY DEMANDS 
 
For this case, we consider a two-period production management problem as shown in Table 
VII. In this example, all costs and demands are given by interval estimates.  
 

Table VII: A two-period production management problem. 
 

t Dt (units) At ($1000) ct ($1000) ht ($1000) 

1 (20,30,60) (20,30,40) (1,4,6) (1,2,3) 

2 (30,50,60) (20,40,50) (2,3,5) (1,3,4) 

 
6.1 Solution by Crisp Dynamic Programming (CDP) 
 
The translated scalar costs and demands are given in Table VIII. 
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Table VIII: The translated scalar costs and demands. 
 

t Dt At ct ht 

1 30 30 4 2 

2 50 40 3 3 
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The optimal schedule is shown in Table IX. 
 

Table IX: The optimal schedule. 
 

Period 1 2 

Production  30 50 
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The optimal production schedule is shown in Table X. 
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Table X: The optimal production schedule. 
 

Period 1 2 

Production D1= (20,30,60) D2= (30,50,60) 

 
6.3 Comparison of the Two Solutions  
 
The solutions obtained by CDP and FDP are completely different. The former is represented 
by single numbers and has lost much of the original information. The latter is represented by 
fuzzy numbers and still retains the interval nature. As discussed earlier, this difference is very 
important and useful in practice.  

These examples demonstrate the procedures and advantages of the general fuzzy 
approach using fuzzy numbers. Their results indicate that this proposed approach is an 
effective technique to solve the fuzzy MP-POM problems.  
 

7. DISCUSSION  
 
In this section three fuzzy MP-POM methods are compared and contrasted. They are: 
Sommer’s method, Kacprzyk-Staniewski’s (K-S’s) method, and the method developed in this 
work.   
 
7.1 Sommer’s Method  
 
Sommer [21] solved a numerical example of a fuzzy MP-POM problem to demonstrate his 
method. Mathematically his problem is described as follows: 
 The membership function of production level is:  
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The membership function of inventory level at the end of the management horizon is:  
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The management horizon is N = 4, the initial stock level is x1 = 0, and the demands are: 
D1 = 45, D2 = 50, D3 = 45, D4 = 60. 

In this situation, both demand and inventory are crisp numbers, but the two objectives -
“production level shall decrease as steadily as possible” and “the ending inventory level shall 
be as low as possible”- are fuzzy. It seems that the fuzzy environment of this production 
management problem is provided artificially rather than naturally. The reason for our 
employing a fuzzy set or a fuzzy number to denote a goal is that the goal cannot be precisely 
defined due to lack of accurate information. However, when exact data are available, such as 
demand and inventory in the above example, the decision maker should not set up a fuzzy 
objective, since it is invariably either suboptimal or infeasible.  

In Sommer’s example, if we think of the objective “the ending inventory level shall be as 
low as possible” as a constraint xN+1 = 0, and his other objective “the production level shall 
decrease as steadily as possible” as a function of time t, dp/dt = f(t), then the optimal 
production schedule can be easily obtained by crisp dynamic programming techniques.  
 
7.2 Kacprzyk - Staniewski’s (K-S’s) Method 
  
The conventional approaches to production and inventory control usually involve optimization 
of a performance index consisting of some cost-related terms. Kacprzyk and Staniewski [22] 
transformed the cost optimization problem into one of maintaining some desired inventory 
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level. That is, they believe the average costs usually are known to be some functions of 
inventory and they are mostly isomorphic; the same applies to replenishment or production. 
In their example, it is assumed that X = (1,…, l0); u, Y = l,...,5).  
Given are the following:  

the reference fuzzy inventory level S1,….,S5; 
the reference fuzzy replenishment C1,….,C3 ; 
the fuzzy demand D and fuzzy goal G;  
the fuzzy constraints C(S1),….,C(S5).  

The above problem differs from Sommer’s problem in that both its demand and inventory are 
fuzzy. This problem is more fuzzy and more practical than Sommer’s problem in the sense of 
fuzzy sets theory. But from the practical point of view, it is too hard for the decision maker to 
provide the necessary and consistent data for determining the membership functions of the 
Si’s, Cj’s and C(Si)’s. This is especially true when i and j are big numbers.  

As an alternative to using Kacprzyk and Staniewski’s method, the problem can be solved 
by a procedure similar to our proposed general fuzzy approach as follows.  

(a) use an appropriate fuzzy number, I*, to indicate the “desired inventory level’; 
(b) use the transaction function  

I* = It-1 (+) Pt (-) Dt 

and the given I0 and Dt to determine tP , t = l,,...,N, where Pt is the fuzzy 

replenishment or   production to maintain the desired inventory level and satisfy the 
fuzzy demand; 

(c) consider both Pt and the constraints on the replenishment or production 
simultaneously to determine the optimal replenishment policy;  

(d) if the cost functions related to inventory level, f(It) and replenishment level, f(Rt) are 
known, we can use the total cost function F = f(It) (+) f(Rt) to determine the optimal 
policy.  

Following the above procedure, all the decision maker has to do is providing estimates for 
the desired inventory level, the replenishment constraints, and the cost functions.  
 
7.3 Our Proposed Method 
 
As shown in sections 4, 5, and 6 above, the fuzzy environment provided in our three 
examples is a natural one. We can obtain the necessary information on fuzzy costs and 
fuzzy demands by requiring the decision maker to provide the corresponding estimates. Our 
method not only gives the optimal fuzzy schedule but also the minimum fuzzy total cost. 
From a practical view point, these are very important and useful for production engineers and 
operations managers. Thus, we can summarize the essential features of the three fuzzy MP-
POM methods in Table XI.  
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Table XI: The three fuzzy MP-POM methods. 
 

 Sommer’s K-S’s Ours 

Goal Fuzzy Fuzzy Fuzzy 
Constraint Fuzzy Fuzzy Fuzzy 
Demand Crisp Fuzzy Fuzzy 
Inventory Crisp Fuzzy Fuzzy 
Costs -------- -------- Fuzzy 
Other Conditions Same Same Same 

Fuzzy Environment Artificial Natural Natural 

Transition Equation 
tttt DPII 1  tttt DPII 1  tttt DPII 1  

Optimization Function Max. CG    Max. CG    Min. Total Cost 

Schedule Most Satisfaction of 
Decision Maker 

Most Satisfaction of 
Decision Maker 

Minimization of Total 
Cost of Firm 

Data Collection Medium Difficult Easy 

Computation Simple Tedious Medium 

Fuzzy Multistage Decision 
Process 

Bellman & Zadeh’s 
Model 

Bellman & Zadeh’s 
Model 

General Fuzzy 
Approach Using Fuzzy 

Numbers 

 
8. CONCLUSIONS  
 
This work achieved the purpose of finding an effective method to solve the interval MP-POM 
problem while retaining all the original information through the general fuzzy approach, 
namely employing appropriate fuzzy numbers to represent the interval estimates in the multi-
stage decision problems; using the operations of fuzzy numbers combined with dynamic 
programming to solve the problem; and determining the required minimum/maximum fuzzy 
number through fuzzy number ranking techniques.  

Three MP-POM problems with fuzzy costs and/or fuzzy demands were solved by this 
approach. The optimal solutions of production schedule and total cost were indicated by 
fuzzy numbers. The main advantages of this approach are fuzzy representative solutions for 
the optimal production schedule as well as the minimum total cost in terms of interval units 
rather than single numbers. These solutions give the production engineers and the 
operations managers a clear picture about the interval units of production at each period and 
the interval units of the required minimum total cost, thus enabling them to manage the 
production flexibly and control the cost effectively. 

On the other hand, the crisp model gave solutions by single numbers and lost a 
significant amount of useful information. In such a situation, the only option available to the 
engineers and managers is to produce the exact number of units given by the schedule and 
hope to incur the so called minimum total cost. Obviously, the proposed fuzzy approach is 
more realistic than the traditional crisp approach.  

Another advantage of the proposed fuzzy approach is it partially overcomes the 
dimensionality difficulty of large scale problems. Thus a potential area for future research is 
to represent the data needed to solve real life multistage problems by fuzzy numbers and 
carry out the computations by dynamic programming using computers.  

In this paper, the proposed approach was applied to solve problems with fuzzy goals and 
fuzzy constraints defined in the same space. Hence another promising area for further 
research is to extend this approach to solve problems with fuzzy goals and constraints 
defined in different spaces. 

 
REFERENCES 
 
[1] Corsano, G.; Aguirre, P.A.; Montagna, J.M. (2009). Multi-period Design and Planning of 

Multiproduct Batch Plants with Mixed-Product Campaigns, American Institute of Chemical             
Engineers (AIChE) Journal, Vol. 55, Issue 9, 2356-2369  



Naadimuthu, Liu & Lee: Multi-period Production Planning Under Fuzzy Conditions   

 

73 
 

[2] Neiro, S.; Pinto, J. (2005). Multi-period Optimization for Production Management of Petroleum 
Refineries, Chemical Engineering Communications, Vol. 192, No. 1, 62-88 

[3] Safaei, N.; Tavakkoli-Moghaddam, R. (2009). Integrated Multi-Period Cell Formation   and 
Subcontracting Production Planning in Dynamic Cellular manufacturing Systems, International 
Journal of Production Economics, Vol. 120, Issue 2, 301-314  

[4] Porkka, P.; Vepsalainen, A.P.J.; Kuula, M. (2003). Multi-period Production Planning Carrying 
Over Set-up Time, International Journal of Production Research, Vol. 41, Issue 6,1133-1148 

[5] Moreno, M.S.; Montagna, J.M.; Iribarren, O.A. (2007). Multi-period Optimization for the Design 
and Planning of Multiproduct Batch Plants, Computers and Chemical Engineering, Vol. 31, 
Issue 9, 1159-1173 

[6] Moreno, M.S.; Montagna, J.M. (2009). A Multi-period Model for Production Planning and 
Design in a Multiproduct Batch Environment, Mathematical and Computer Modelling, Vol. 49, 
Issue 7-8, 1372-1385 

[7] El Hafsi, M.; Bai, S.X. (1998). Multi-period Production Planning with Demand and Cost 
Fluctuations, Journal of Mathematical and Computer Modelling, Vol. 28, No. 3, 103-119 

[8] Feylizadeh, M.R.; Modarres, M.; Bagherpour, M. (2008). Optimal Crashing of Multi-period 
Multiproduct Production Planning Problems, World Applied Sciences Journal, Vol. 4, 499-505 

 [9] Li, Y.; Zhang, J.; Chen, J.; Cai, X. (2010). Optimal Solution Structure for Multi-period 
Production Planning with Returned Products Remanufacturing, Asia-Pacific Journal of 
Operational Research (APJOR), Vol. 27, Issue 5, 629-648  

[10] Yildirim, I.; Tan, B.; Karaesmen, F. (2005). A Multi-period Stochastic Production Planning and 
Sourcing Problem with Service Level Constraints, OR Spectrum, Vol. 27, 471-489 

[11] Filho, O.S.S. (1999). An Aggregate Production Planning Model with Demand under 
Uncertainty, Production Planning and Control, Vol. 10, No. 8, 745-756  

[12] Kaminsky, P.; Swaminathan, J.M. (2004). Effective Heuristics for Capacitated Production 
Management with Multi-period Production and Demand with Forecast Band Refinement, 
Manufacturing and Service Operations Management, Vol. 6, No. 2, 184-194  

[13] Kazancioglu, E.; Saitou, K. (2006). Multi-period Production Capacity Planning for Integrated 
Product and Production System Design, Proceedings of the IEEE Conference on Automation 
Science and Engineering, 3-8 

[14] Sox, C.R.; Muckstadt, J.A. (1996). Multi-item, Multi-period Production Planning with Uncertain 
Demand, IIE Transactions, Vol. 28, No. 11, 891-900 

[15] Nagasawa, H.; Nishiyama, N; Hitomi, K. (1982). Decision Analysis for Determining the 
Optimum Planning Horizon in Aggregate Production Planning, International Journal of 
Production Research, Vol. 20, No. 2, 243-254  

[16] Kogan, K.; Portougal, V. (2006). Multi-period Aggregate Production Management in a News-  
vendor Framework, Journal of Operational Research Society, Vol. 57, No. 4, 423-433 

[17] Balakrishnan, J.; Cheng, C.H. (2007). Multi-period Planning and Uncertainty Issues in   
Cellular Manufacturing: A Review and Future Directions, European Journal of Operational 
Research, Vol. 177, Issue 1, 281-309  

[18] Ryu, J.H. (2006). Multi-period Planning Strategies with Simultaneous Consideration of 
Demand Fluctuations and Capacity Expansion, Industrial and Engineering Chemistry 
Research, Vol. 45, No. 19, 6622-6625  

[19] Wagner, H.M.; Whitin, T.M. (1958). A Dynamic Version of the Economic Lot Size Model, 
Management Science, Vol. 5, Issue 1, 89-96 

[20] Kaufman, A.; Gupta, M.M. (1985). Introduction to Fuzzy Arithmetic: Theory and Applications, 
Van Nostrand Reinhold    

[21] Sommer, G. (1981). Fuzzy Inventory Scheduling, Lasker, G.E. (Editor), Applied Systems and 
Cybernetics, Vol. 6, Pergamon, 3052-3060  

[22] Kacprzyk, J.; Staniewski, P. (1982). Long-term Inventory Policy-making through Fuzzy 
Decision-making Models, Fuzzy Sets and Systems, Vol. 8, 117-132  


