
Advances in Production Engineering & Management 7 (2012) 2, 81-92
ISSN 1854-6250 Scientific paper

81

EVOLUTIONARY MEASUREMENT-ESTIMATION METHOD
FOR MICRO, SMALL AND MEDIUM-SIZED ENTERPRISES

BASED ON ESTIMATION OBJECTS

Celar, S.*; Vickovic, L.* & Mudnic, E.*

*University of Split, FESB, R. Boskovica 32, 21000 Split, Croatia

E-mail: stipe.celar@fesb.hr

Abstract:
In the early phase of software project (in the analyses or user requirements specification
phase) there are little measurable software artefacts as well as little time for measurements.
Reliable software size estimation in such early project phase significantly influence
estimation reliability of other project parameters (like effort, duration or cost) and overall
project success rate. This paper presents evolutionary method for estimation objects
development based on historical measurement data. Estimation objects, recognized from the
measurement data in three steps, are classified according their attributes into hierarchy
dimensions. Estimation objects are enterprise native and easy for use in early software size
estimation. Also, in the paper case study results from the SME applying Function Points for
Functional Size Measurement (FSM) are described but the method is independent of FSM or
functional size unit.

Key Words: Functional Size Measurement (FSM), Early Software Size Estimation, Function
Point, Estimation Objects, Small and Medium-sized Enterprise (SME)

1. INTRODUCTION

We all witness big changes and improvements that software and the whole information and
communication technology (ICT) undergone in the last few decades. However, the
successful rate of software projects does not follow that rate [1], [2], [3], [4]. Results in Table I
show that software projects for almost ten years do not show clear improvements despite the
progress of management practices, software development methods, process improvement
models and quality standards [5], [6], [7], [8], [9], [10].

Table I: Project success rate (CHAOS report)) [2].

'94
%

'96
%

'98
%

'00
%

'02
%

'04
%

'06
%

'09
%

Successful 16 27 26 28 34 29 35 32

Challenged 53 33 46 49 51 53 46 44

Failed 31 40 28 23 15 18 19 24

Inaccurate estimates of software development effort or project development cost are
frequently reported causes of ICT-project failures [11], [12], [13], [14]. Project effort and cost
estimation are perhaps the two most crucial issues that a project manager has to make.
Majority of the researchers in this field use terms “cost” and “effort” interchangeably [14].

http://dx.doi.org/10.14743/apem2012.2.132

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

82

Project managers have to estimate costs and allocate resources to the system development
before it is built. Software cost estimation involves the estimation of one or more of the
following variables:

 effort (usually in person-months)

 project duration (in calendar time)

 cost (in $ or €).

The above variables are related through the productivity of Software Production Unit (SPU)
that depends on broad number of characteristics of development process and technology,
SPU, business process. Some authors mention from several dozen to more than one
hundred of different characteristics [7], [10], [15], [16].

The software size is the most important factor that affects the software cost. In the last
three decades the software size, e.g. system functionality become more complex and
therefore hard to estimate and measure. During that period methods for software functional
size measurement were also developed. In fact there are well defined, explored and
standardized methods for functional size measuring (like line of code – LOC, function point –
FP, use case point – UCP). Further, there are wide spectrum of well described estimation
methods – Direct Estimation Methods and Derived Estimation Methods [16], [17].

However, in practice there are some big obstacles for wider and more efficient use of
Functionality Size Measurement (FSM) and estimation methods. They could be summarized
in the following way:

 It is hard to measure something that is still in development and do not exist fully [17].
It can only be measured based on development documentation or software product
itself and such measurement could be time-consuming and expensive [16].

 For efficient application of measurement and estimation techniques the micro and
small software development enterprises should improve their overall maturity grade or
use adequate software quality models [3].

 In the time of constant market pressure an agile movement become a dominant
development paradigm and SPUs are forced to measure and estimate early in the
software life cycle and with fewer requirements.

Today, with ISO, CMM, CMMI and other software quality assurance (SQA) models most of
micro and small-medium enterprises (or their SPUs) struggle with software quality assurance
tasks [18]. They use methods like Program and Evaluation Review Technique (PERT) and
earned value to track progress. The problem is with the imprecision and inaccuracy of most
software project plans [11].

This paper proposes a small contribution for adoption measurement and estimation
methods in micro, small and medium-sized enterprises (MEs and SMEs) environment based
on following premises:

 enterprise native SW-objects – estimation objects are produced in enterprise’s
ordinary development process and all people are familiar with

 independency of Functional Size Unit (FSU) – functionality size of estimation objects
can be measured/estimated in any unit.

The remainder of the paper is organized as follows: Section 2 describes measurement and
estimation challenges that micro, small and medium-sized software enterprises are
confronting with. Brief overview of software size measurement, estimation metrics and
methods is given in Section 3. Section 4 introduces proposed estimation method together
with the case study in medium-sized software development enterprise. Section 5 concludes
the paper.

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

83

2. MEASUREMENT AND ESTIMATION PROBLEMS IN MEs AND SMEs

Micro, small and medium-sized enterprises play a central role in the European economy.
They are a major source of entrepreneurial skills, innovation and employment and account
for a large proportion of Europe’s economic and professional activity. In practice, 99.8 % of
businesses in the European Union are SMEs. Between 2002 and 2008, the number of SMEs
increased by 24 million (or 13%) whereas the number of large enterprise increased by only
2000 (or 5%). The growth was also reflected in employment figures. In absolute numbers 9.4
million jobs were created in the SME-sector between 2002 and 2008 [19].

Table II: Enterprises in Croatia, December 2011 (SW, ICT and general) [20], [21].

Nr. of
enterprises

Number of employees

Total 0 1 – 9 10 – 49 50 – 249 250 – 499 500 and more

ALL activities 126.264 55.682 55.955 10.948 3.092 338 249

% 100% 44% 44% 9% 2% 0,3% 0,2%

J - Information and
communication

4.867 2.145 2.242 408 59 8 5

% 100% 44% 46% 8% 1% 0,01% 0,004%

SW enterprises (J 62
– Comp.

programming)
2.755 1.333 1.231 172 18 1 0

% 100% 48% 45% 6% 1% 0,001% 0%

SW enterprises in
ICT sector (%)

57% 27% 25% 4% 0,37% 0% 0%

SW enterprises in
general economy (%)

2% 1% 1% 0,14% 0,01% 0,001% 0%

Data about local Croatian and broader USA market (Table II and Table III confirm the above
statements. SW enterprises are mainly Micro Enterprises (ME), with 10-20 employees.
Survey conducted on 150 software SMEs shows that majority of them very rarely recognised
and used basic quality assurance concepts from the internationally recognised quality
standards, including ISO and Capability Maturity Model Integration (CMMI) [18].

As an answer on constant market pressure an agile movement becomes a dominant
development paradigm during last two decades. In their agility many SPUs reduce
significantly time for planning, analysis and design [8]. Further, reducing documentation
makes difficulties for applying FSM techniques based on FP that presumed user software
requirements specification (SRS) and design documentation. Therefore it is hard to expect
that SPUs, especially SMEs, devote enough time to adopt and use relative complex
estimation and measurement techniques. In such environment it is hard to make reliable
estimation, especially in early project phase, i.e. before design specification or some
prototype are done [22], [23]. In fact, estimation failure can be huge [9], [10], [22], [24].
Because of nonexistent measurable artefacts it is not even possible to apply measurement
methods as a mean to get reliable estimation. An estimation uncertainty became smaller as
project progresses but in the same time its importance decreases significantly (Figure 1).

From those reasons we proposed the method for creating the estimation objects from the
enterprise’s historical data. From another side, reliable software size estimation or
measurement is only the first step in reliable project cost and effort estimation [3], [4], [14],
[25]. It is reason we propose evolutionary three-phased approach for creating native
estimating objects and Functional Size Units (FSU) for MEs and SMEs.

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

84

Table III: ICT enterprises in USA, December 2011 (Number of Employees) [26].

Nr. of
enterprises/emp

loyees
1 – 4 5 – 9 10 – 19 20 – 49 50 – 99 100 –249 250 - 499

500 and
more

91.747 60.999 15.907 6.345 3.890 1.686 992 1.395 533

100 % 66 17 7 4 2 1 2 1

Initial
Product

Definition

Approved
Product

Definition

Requirements
Specifications

Product
Design

Specification

Detailed
Design

Specification

Accepted
Software

Phases and Milestones

Relative Size
Range

0.25x

0.5x

x

1.25x

1.5x

2x

4x

Figure 1: Uncertainty conus [9], [10], [24].

3. SOFTWARE SIZE MEASUREMENT AND ESTIMATION METHODS

Software metrics are measures that are used to quantify software artefacts, software
development resources, software development process or software related projects. In
software engineering more than 300 metrics have been defined [27]. Some of them are only
used for scientific purposes and they don't have practical implementations. Especially for
SME estimation methods, or combination of measurements and estimations are tried to be
used instead of only measurements. This section gives a short overview of software
attributes and methods for their measurement and estimation.

Object-oriented programming languages introduced new measurement objects and
measurement attributes. Software complexity described by objects and their attributes can
be measured with specialized object-oriented metrics based on use case (Figure 2).

Requirements

Specification

Redudancy

Size

Reuse

Modularity

Cohesion

Coupling

Complexity

Coverage

Design

Code

Test Cases

Figure 2: Object-oriented measurement objects and attributes [27].

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

85

The most measured and estimated attribute is software size. Software size is often difficult to
measure and estimate, especially early in a project (prior to the completion of the
requirements specification). Later in a project, certainty of an estimate becomes bigger and
less important [9], [10], [28] (Figure 1). Certain methods and metrics used in FSM can impact
on the measurement’s potential accuracy.

3.1 LOC as functional size unit

Methods for measuring the complexity of software try to identify the measurable software
properties and connections between them. Some of the measurable properties are the
length, volume, space occupied in memory, the number of lines of code, function points.

The Line of Code (LOC, SLOC, KLOC, KSLOC) measure – a count of the number of
machine instructions developed, was the first measure applied to software. Its first
documented use, the attempt to formally measure software development productivity was in
the 70’s [29]. LOC method has some big drawbacks. LOC is dependent on the programming
language and code size does not represent the functionality of the program. Accurate LOC is
to know only after the project is completed, and therefore it is hard to use this method for
estimation (except for expert judgments in analogy methods) [7], [16], [30].

Nevertheless, LOC is still popular functional size unit (FSU) and many enterprises
express functionality of their products in Source Lines of Code (SLOC) and convert ‘newly’
measures into this one. On this way a measurement process can be automated [16] and
SLOC counting for completed projects can be done with minimal effort and without
subjectivity [29].

3.2 Function Points as functional size unit

In 1979 Allan Albrecht published Function Points metrics for quantifying the amount of
business functionality an information system delivers to its users [15], [16]. It is a synthetic
metric derived from enumerating five visible, well-defined external characteristics of software
based on 5 Base Functional Components (BFCs) [16], [24], [31]:

1. transactions:

 external inputs (EI) such as logical transaction inputs or system feeds;

 external outputs (EO) or external inquiries (EQ) such as online displays, reports or
feeds to other systems;

2. data entities:

 internal logical files (ILF) such as logical groups of user defined data and

 external interface files (EIF) such as interfaces to other systems.

Function Points related very closely to the types of business applications that IBM was
developing at the time. For these types of systems, they are a far superior measure of
business value than SLOC and can be much better for an organization that develops these
types of systems to use for productivity comparison studies.
Function Points metric has its limitations that make it difficult to start using in software
enterprises, especially in small and medium-sized ones. The most important limitations are
described below.

FP is relatively complex metric, extensive for learning and requires lots of time to master
it. Due to lower limits in calculating function point complexity, the lower limit for normal
function point calculations is about 15 FPs [16], [32]. Therefore micro function point approach
for smaller changes measurement is new challenging approach. Furthermore, FP cannot be
extracted automatically from design documents [33].

FP metric is extensible in counting as well. Due to average price of functionality
measurement (4 6 $/FP) the FP are not applicable in practice for SW projects with large

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

86

functionality (with more than 15000 FP) [16], [32]. Consequently, the measurement
automation for projects with large functionality is challenge as well.

As of 2012 there are more than 20 variants of FP metrics with few conversion rules from
one method to other [16], [32] and at least five of them (IFPUG, Mk II, COSMIC, NESMA and
FiSMA) were confirmed by the International Organisation for Standardisation (ISO). This
diversity of variants additionally complicates practical use of FP.
In literature it is possible to find additional function points’ drawbacks (e.g. [34]), depending of
author’s specific appliance area or point of view. However, function points are widely
accepted and applied concept, and as such they are a basis for many other measurement
and estimation methods.

From the estimation point of view there is an important drawback of FP based methods.
That is a necessity to analyze system/software under study or more precisely to decompose
it (to recognize logical transactions) and make entity and relation model (to recognize data
entities) in order to identify the Base Functional Components. It is slow and complicated.

3.3 Object-oriented FSMs

Use cases were first introduced by Ivar Jacobson in the mid 80’s. They provide a language
for describing the requirements of a software system in a way that facilitates communication
between developers and the eventual users of the system. Each use case describes a typical
interaction that may occur between a user (human operator or other software system) and
the software. The focus is on the functions that a user may want to perform or have
performed rather than on how the software will actually perform those functions.

Useful and practical FSUs that are oft used for the most measured software attribute are
Use Case Point and Story Point [9], [16], [28]. An Use Case Points method (UCP) were
introduced in 1993 by Gustav Karner [29]. Use Case Points count and classify two elements:
1) the actors in the use case and 2) the transactions that are required to make the use case
happen. Use case points describe the functionality being delivered rather than the way this
functionality is implemented. Unlike Function Points, the Use Case Points can cover a wider
spectrum of application types. The problem with using use cases is their lack of
standardization across the industry. An organization which has a well defined process for
defining use cases could successfully use them for productivity tracking and effort estimation.
[16], [29]

A Story Point is usually somewhat larger than a function point perhaps roughly equivalent
to two IFPUG function points, or perhaps even more [16]. They are defined within the SPU
and are used within that unit to estimate effort and measure productivity and quality.

3.4 Estimation methods

Software size estimation methods can be generally considered as Direct Estimation Methods
(or non-algorithmic, Expert Opinion Methods) and Derived Estimation Methods [16], [17].
Direct Estimation Methods (or non-algorithmic) imply the cooperation of one or more experts
which directly estimate required elements of the estimation of function points, basing their
estimation on experience and intuition.

The basic difference between direct and derived estimation methods is that in the latter,
estimation isn't performed directly on function point values, but rather on different project
parameters which are somehow related to function point values.

According to the abovementioned categorization of direct and derived estimation
methods, one of the most known direct estimation method is the Delphi according to which
the predictions of a number of experts are combined. [17] Decomposition Method is also
often used method. By decomposing the project into smaller subprojects, it is possible to
conduct the evaluation part by part, in detail. Estimations based on analogy, Parkinson’s
Method and ‘Price-to-win’ also fall into the category of direct estimation methods.

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

87

Derived Estimation Methods or Algorithmic Model Methods provide with the estimation of
complexity as a function of more variables which relate to certain attributes of software
development project.

During the late 1970s and during the 1980s, some sophisticated algorithmic software
estimating models were developed such as Dr. Boehm’s Constructive Cost Model
(COCOMO), PRICE-S (now True S), SLIM, SEER-SEM, and SPQR/20 (now Knowledge
Plan).
Each algorithmic model has the form:

Effort = f (x1, x2, ..., xn), (1)

where (x1, x2, ..., xn) are the cost factors.

The existing algorithmic methods differ in two aspects:

 in the selection of cost factors and

 in the form of function f.

Another important variable relating estimation is the productivity. The relationship between
the size of software and the effort required to produce it is named productivity. There are
plenty factors influencing the overall software project productivity of SPU – Albrecht
mentioned 14 factors [15] while other researchers mention 45 [16] or even more than 100
different productivity factors [7], [10]. These factors have to be taken into account in effort
estimation and project planning.

4. PROPOSED METHOD

Software enterprises (or Software Production Unit in software enterprises) can not apply
measurement and estimation methods without tailoring them. Learning, tailoring and
adopting those methods is not easy process for the ME&SMEs from few reasons:

 FSM and estimation methods itself are quite complex

 lack of trained internal estimators and measurement experts

 internal SME’s processes have to be enough mature to implement FSM and
estimation concepts

 lack of a database of historical measurement data.

4.1 Evolutionary approach

CMMI maturity level needed for efficient adopting FSM and estimation methods, of at least
core processes, is 3-4 and learning time depends on more factors. Majority of software
enterprises are in ME&SME category and struggle with software assurance activities.
Measurement process implementation is big challenge for them also. That implementation is
not simple and can take several years. As a result in selection of metrics and methods it is
necessary to align enterprise’s or SPU’s capabilities with existing metrics and methods. An
evolutionary approach, step by step could be useful.

In the first phase called measurement phase as a strategic goal is established application
of adequate measurement method. In this phase it is important to:

 create politics of measurements

 identify a person or team to be carrier of measurement politics

 select adequate metrics and methods

 provide internal education and application on real projects

 establish repositories for measurement data

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

88

In this phase (Phase A, Figure 3) it is important to recognize objects/entities that could be
used for future estimations. It is desirable that objects can be easily recognized in
development process and easy connected with measurement data. In addition, metrics
closer to large number of developers (not only scientists) have more chances to be widely
accepted. For example, UCP is more understandable and simpler for appliance than
Unadjusted Function Point (although less researched scientifically).

The objects' granularity can vary from single modules to whole projects, but it is the most
relevant to identify those objects that are repeatable in the system (i.e. they can be grouped)
but also differ from similar ones by some attribute. Those objects could be for example some
class, forms, queries, reports or even some kind of modules.

The next phase is the most intensive phase (Phase B, Figure 3). Measurements and
estimations are conduct in parallel. Estimation is done based on measurement data and
recognized objects from the Phase A. Strategic goal of this phase is to select and implement
adequate estimation metric and method, as well as to establish estimation data repository.
Objects recognized from measurement data are classified according their attributes
displayed in ontology model (Figure 4) and its dimension (n) described in the Table IV. Each
dimension consists of some elements (m). After classification the objects can be used for
software attributes estimation and/or project estimation and compared with measurement
data. After reaching these goals, in the Phase B, the SPU can from own classified history
data recognise typical produced objects and identify effort/time/cost spent for those objects.

1.1
FSM Selection

1.2.
SW

Functionality
Measurement

Estimation
Objects

Identification

Estimation
Objects

Classification

Estimation
Objects

Validation

measurement
data

analysis

1.
Functionality

Measurement

2.
Productivity
& Scheduling

Activities

2.
Productivity
& Scheduling

Activities

1.
Functionality

Estimation

2.
Productivity
& Scheduling

Activities

A

B

C

Estimation

Object

Estimation Metric

Figure 3: Three-phase measurement-estimation approach.

Some external collection of measured data like ISBSG [35], SPQR and others [16], [35] can
be used for benchmarking, but their constraints regarding accurateness must be taken into
account [16]. Advantage of internal repositories regarding benchmarking repositories is
obvious – internal data and internal objects are native for process participants. As a result
process participants can easily accept and use such repositories for estimation.

After estimation objects are classified the estimation itself should be validated on same
real projects parallel with measurement process. After validation the measurement activities
could be replaced with much simpler and cheaper estimation process. It means, the Phase B
is completed and begins the final phase, Phase C (Figure 3).

A maximal number of object instances is calculated according to the following formula:

Nmax = mn
 (2)

where is m maximum among all dimensions.

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

89

Estimations
Object

Type
 Dimension

Complexity
Dimension

Development
Dimension

Component
Dimension

Is characterised
 by

ocurrs in

Is characterised by

Is characterised by

Is followed
by

Is followed
by

Is followed
by

Is characterised by

Figure 4: Ontology of mn object point model.

For a model with four dimension and two elements in each dimension it comprises 16
estimation elements, what could be quite enough if validated.

4.2 Case study

Software Medium-seized Enterprise applied systematically proposed measurement &
estimation method. Measurement data are acquired during two years long measurement in
development projects. Objects are then classified, validated and used for small and big
development projects (Table IV and Figure 5).

An estimation model consists of 4 dimensions with 2 elements at the first three
dimensions (Type, Complexity and Development, Figure 5). In the 4th dimensions the model
has 4 objects in some branches (Figure 5). The number of estimation objects is 18
(theoretical maximal number would be 44). This number of estimation objects has proved as
a sufficient for reliable estimates.

Table IV: Characteristics of mn object point model.

Dimension Dimension’s instances recommendations

Object Type

It is advisable to distinguish at least two or three different levels according
to the objects SPU produces.
Business area specificity could be expressed on this level by adding
separate vertical.

Object Complexity
It is advisable to distinguish between two or three different levels relating
complexity

Development perspective

It is advisable to distinguish between two or three different levels according
to the life cycle. Advisable is to distinguish between:

- new development
- enhancement
- re-development of existing software

Component perspective
This is level for the objects.
Business area specificity could be expressed on this level by adding
separate objects.

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

90

Table V: Characteristics of 18 final software objects – case of medium-sized enterprise.

Object Description
Measured

avg. UFP

MCN-1
NEW COMPLEX MODULE – 1, it is a new module that links more entities and it does

not possess any data processing (e.g. item entry or generating)
44.49

MCN-2
NEW COMPLEX MODULE – 2, it is a new module that links more entities and it

possesses data processing (e.g. item entry or generating)
116.9

MCN-3

NEW COMPLEX MODULE – 3, it is a new module that possesses complex data

processing (e.g. item entry or generating) or it contains more logical units (e.g. write-off

record)

318.72

MCO-1
OLD COMPLEX MODULE – 1, it is just a field adding or removal modification on one

tab in complex module (e.g. header modification)
12.66

MCO-2
OLD COMPLEX MODULE – 2, it is just a field adding or removal modification on

several tabs in complex module (e.g. header and items modification)
31.77

MCO-3 OLD COMPLEX MODULE – 3, it is a modification in one batch in complex module 74.99

MCO-4 OLD COMPLEX MODULE – 4, it is a modification in several batch in complex module 295.86

MSN-1
NEW SIMPLE MODULE – 1, it is a new module in a common process category like

preview or simple control
4.02

MSN-2
NEW SIMPLE MODULE – 2, it is a new module that references just one entity. This

category also includes complex controls that appear on several places
16.65

MSO
OLD SIMPLE MODULE, is a modification on simple module (type 1 or 2) that keeps

module still simple
3.56

RCN-1
NEW COMPLEX REPORT – 1, is a new report that receives data from more entities

and does not include any data processing
18.94

RCN-2
NEW COMPLEX REPORT – 2, is a new report that receives data from more entities

and includes data processing
32.01

RCO-1

OLD COMPLEX REPORT – 1, is a modification of the complex report that references

less than four entities, or adding or deleting of five or less than five fields is performed

without any changes on data processing

6.04

RCO-2

OLD COMPLEX REPORT – 2, is a modification of the complex report that references

more than four entities, or adding or deleting from five to 15 fields is performed without

any changes on data processing

12.75

RCO-3

OLD COMPLEX REPORT – 3, is a modification of the complex report that performs

adding or deleting more than 15 fields or just one segment of data processing is

changed

30.11

RCO-4
OLD COMPLEX REPORT – 4, is a modification of the complex report that changes

more segments of data processing
89.60

RSN NEW SIMPLE REPORT, is a new report that receives data from simple entity 5.09

RSO OLD SIMPLE REPORT, it is a modification of simple report that keeps it simple 5.38

OBJECT

Module Report

Simple SimpleComplex Complex

DEVELOPMENT

dimension
New Old New Old New Old New Old

COMPONENT

dimension

TYPE

dimension

COMPLEXITY

dimension

MCO-1

MCO-2

MCO-3

MCO-4

MCN-1

MCN-2

MCN-3

MSN-1

MSN-2

MSO RCN-1

RCN-2

RCO-1

RCO-2

RCO-3

RCO-4

RSN RSO

Figure 5: 18 final software objects for estimation – case of medium-sized enterprise.

Additional objects' validation followed in large development project lasting for 13 months and
size of delivered software is measured by method Mk II FP Index (V1.3) [36] and it was 7.560

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

91

Unadjusted Function Points (UFPs). Software size was estimated in the early development
phase using the initial and additional user requirements – estimation was 6.773. Overall
estimation error was only 11,6% [37].

According to [10] typical software organizations are struggling to avoid estimates that are
incorrect by 100% or more while only sophisticated software organizations can achieve
results within ±5% of estimated results instead of within ±10%. Similar also states [32] and
[35].

5. CONCLUSION

Adoption of measurement and estimation processes belongs under strategic goals for
software enterprise. With reliable early software size estimation method an enterprise can
improve overall project success rate significantly. Advantage of the proposed evolutionary
measurement&estimation method is its independence of measurement and estimation
methods, metrics and functional size units. The characteristics of the method could be briefly
summarised:

 measurement data from own historical projects are used for estimation objects
creating

 created estimation objects are easy to recognise and use for early software size
estimation.

This method is appropriate especially for smaller SPU (micro, small and medium-sized
enterprises), but it can also be used by large enterprises.

Drawback of this method is its complexity in establishing of estimation objects from the
company’s own history measurement data.

Future research will focus on reducing effort in data collection through implementing
probabilistic methods like Bayesian network.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

The Standish Group. The Chaos Report (1994). from
http://www.standishgroup.com/sample_research/chaos_1994_1.php, accessed on 16-08-2011
Jorge Dominguez (2009). The Curious Case of the CHAOS Report 2009, from
http://www.projectsmart.co.uk/the-curious-case-of-the-chaos-report-2009.html, accessed:
2011-11-13.
Jørgensen, M., Gruschke, T.M. (2009). The Impact of Lessons-Learned Sessions on Effort
Estimation and Uncertainty Assessments, IEEE Transactions on Software Engineering, Vol.
35, no. 3, (2009), pp 368-383, doi: 10.1109/TSE.2009.2
Boehm, B.W., Valerdi, R. (2011). Impact of Software Resource Estimation Research on
Practice: A Preliminary Report on Achievements, Synergies, and Challenges, Proceedings
International Conference on Software Engineering, May 21-28, 2011, Honolulu, Hawaii, USA,
ISBN: 978-1-4503-0744-4, pp. 1057-1065
Abran, A., Moore, J., Bourque, P., Dupuis, R. (2004). SWEBOK: Guide to the Software
Engineering Body of Knowledge 2004 Version. IEEE Computer Society, Los Alamitos,
California
ANSI/PMI (2008). A Guide to the Project Management Body of Knowledge (PMBOK® Guide)
– Fourth Edition. PMI Inc., Newtown Square, Pennsylvania.

[7] Jones, C. (1986). Programming Productivity (Mcgraw-Hill Series in Software Engineering and
Technology, Mcgraw-Hill College, 1986, ISBN: 978-0070328112

[8] Boehm, B., Turner, R. (2009). Balancing Agility and Discipline. A Gide for the Perplexed, 7th
ed. Boston, USA, Addison-Wesley, 2009, ISBN 0-321-18612-5

[9] Cohn, M. (2005). Agile estimating and planning. New York, USA: Prentice Hall, 2005.
[10] McConnell, S. (2006). Software Estimation: Demystifying the Black Art, WA, USA: Microsoft

Press, 2006

Celar, Vickovic & Mudnic: Evolutionary Measurement-Estimation Method for Micro, Small and…

92

[11] Humphrey, W.S. (2005). Why Big Software Projects Fail: The 12 Key Questions, CrossTallk –
The Journal of Defense Software Engineering. 18, 3 (2005), pp. 25-29.

[12] Boehm, B.W., Papaccio, P.N. (1988). Understanding and Controlling Software Costs, IEEE
Transactions On Software Englneerlng, Vol.14 (10), October 1988

[13] ISBSG (2011). Glossary of Terms for Software Project Development and Enhancement,
(version 5.15), International Software Benchmarking Standards Group, Australia

[14] Jørgensen. M., Shepperd M. (2007). A systematic review of software development cost
estimation studies (2007), IEEE Transactions on Software Engineering, 33 (1), pp. 33-53.

[15] Albrecht. A.J., Gaffney. J., Jr. (1983). Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation. IEEE Trans. Softw. Eng.
Volume SE-9, No. 6, IEEE Press (Nov. 1983), pp. 639-648

[16] Jones, C. (2008). Applied Software Measurement – Global Analysis Of Productivity And
Quality, 3rd ed. New York, USA: McGraw-Hill, 2008

[17] Meli, R.; Santillo, L. (1999). Function point estimation methods: A comparative overview.
FESMA 9, 1999

[18] Pusatli, O.T., Misra, A. (2011). A discussion on assuring software quality in small and medium
software enterprises: An empirical investigation, Technical Gazette, Vol 18 (3), (2011), pp.
447-452, ISSN 1330-3651

[19] European Commission (2010). European SMEs under pressure, Annual report on EU SMEs

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

2009
Croatian Bureau of Statistics (2011). Number and Structure of Business Entities, September
2011, Y. XLVIII. (11.1.1/3.)
Poslovna Hrvatska (2011). from http://www.poslovna.hr, accessed on 2011-12-27
Santillo, L., Conte, M., Meli, R. (2005) Early & Quick Function Point: Sizing More with Less
metrics. 11th IEEE International Software Metrics Symposium (METRICS'05), 2005, p. 41-46.
Malik, A.; Boehm, B. (2011). Quantifying requirements elaboration to improve early software
cost estimation, Information Science, Volume 181, Issue 13, 1 July 2011, pp. 2747-2760,
doi:10.1016/j.ins.2009.12.002
Boehm, B. et al. (1999). COCOMO II model definition manual. Center for Software
Engineering, 1999
Boehm, B.W. (1981). Software Engineering Economics. Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1981
Manta Inc. (2011), ICT enterprises in USA. from
http://www.manta.com/mb_33_G4_000/information_technology?refine_company_emp=E01,
accessed on 31-12-2011
Far, B.H. (2011). Software Metrics, from
http://www.enel.ucalgary.ca/People/far/Lectures/SENG421/index.html, accessed on 30-11-
2011

[28] Kan, S. H. (2008). Metrics and Models in Software Quality Engineering, 2nd ed. Boston, USA:
Addison-Wesley Longman, 2008

[29] Minkiewicz, A. (2008). The Evolution of Software Size: A Search for Value, Software
TechNews, Volume 11 (3), Data & Analysis Center for Software, 2008, pp. 18-22

[30] Sommerville, I. (2007). Software Engineering, 8th ed. Boston, USA: Addison-Wesley
Longman, 2007

[31] ISO/IEC 14143-1:1998 (1998). Information technology – Software measurement – Functional
Measurement – Part 1: Definition of Concepts. JTC1/SC 7, ISO/IEC, 1998.

[32] Jones, C. (2008). A new business model for function point metrics. Capers Jones &
Associates Llc, 2008

[33] Moser, S., Henderson-Sellers, B., Mišić, V. B. (1999). Cost estimation based on business
models. The Journal of Systems and Software. 49,1 (1999), str. 33-42.

[34] Stensrud, E. (1998). Estimating with Enhanced Object Points vs. Function Points.
Proceedings COCOMO 13, 1998

[35] ISBSG (2009). International Software Benchmarking Standards Group, Functional Sizing
Methods, from: http://www.isbsg.org/ISBSGnew.nsf/WebPages, accessed: 2011-10-24

[36] UKSMA MK II Function Point Analysis. Counting practices manual, V1.3.1. United Kingdom,
1998

[37] Celar, S.; Mudnic, E.; Kalajdzic, E. (2009). Software Size Estimating Method Based on Mk II
FPA 1.3 Unadjusted. Annals of DAAAM for 2009 & Proceedings of the 20th International
DAAAM Symposium / ed. Branko Katalinic, 2009, pp. 1939-1941

