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Abstract: 
Machine tool chatter causes an instability that can occur in tool-workpiece-machine system. 
Hence surface roughness and tool wear in metal cutting processes. This instability caused by 
interaction between current tool positions and surface left by previous tool passes. Many 
methods have been developed to minimize the effects of regenerative chatter in machine 
tools and to enhance the damping capability minimizing the loss in static stiffness through 
implementation of device uses PZT actuators or MR fluid. The possibility of suppressing self-
excited vibrations of boring process using parametric excitation is discussed. We consider a 
two-mass system of which the main mass is excited by a self excited force (cutting force). A 
single mass which acts as a dynamic absorber is attached to the main mass and, by varying 
the stiffness between the main mass and the absorber mass, represents a parametric 
excitation. Cutting experiments with an excitation current of different waveforms and diverse 
frequencies show that chatter can be significantly suppressed by the effect of parametric 
excitation.  
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Nomenclature 
ωF     excitation frequency (Hz) 
T     period [s] 
Ω     natural frequencies of boring bar [rad/s] 
MR,MB Mass of rod and boring bar respectively 
KB   boring bar stiffness (N/m) 
KN  rubber stiffness (N/m) 
KPE single stiffness element (N/m) 
FC  cutting force magnitude (N) 
CB,CR  damping of boring bar and rod respectively 
b  chip width (m) 
Ks  cutting force coefficient (N/m2) 
h  instantaneous chip thickness (m) 
h0    normal chip thickness (m) 
M, C, K  mass matrix, damping matrix, stiffness matrix 
Ps    static load (N) 
Pt          time component of the load (N) 

1. INTRODUCTION

Removing high volumes of material in shorter time as well as obtaining the right quality from 
the first part produced are goals that one would like to achieve. Tooling systems, and 
especially cantilever tools, and cantilever structural units of machine tools are the least rigid 
components of machining systems and therefore the most prone to vibration that could lead 
to cutting instability. The objective of this paper is to implement efficient damping devices 
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based on identification of parametric models describing the dynamic stability of machining 
systems. The present paper focuses on the design and the dynamic analysis of damped 
boring bar used in internal turning. In order to understand the principle for design of efficient 
damping systems it is necessary to understand the dynamic behavior of machining systems. 
Machining systems may be represented by a closed loop system comprising the machine 
tool elastic structure, the machine tool structure including tool, tool holder, workpiece etc., 
and the cutting process, turning, milling etc., the interaction between the machine tool’s 
elastic structure and the cutting process describes the behavior of the machining system. 
This behavior directly affects the process accuracy. 
 
1.1 State of the art in parametric excitation 

 
All mechanical engineering systems which undergo oscillatory motion are often described by 
a finite set of governing differential equations. If for some reason one or more parameters, 
such as the mass, damping, stiffness, appear as time varying coefficients in these equations, 
the system may be said to be subjected to parametric excitation, and this phenomenon is 
then called parametric vibration[1-3]. 

This is one aspect that parametric vibration differs from the familiar forced vibration, 
whose coefficients in the equations are all constant. The other difference between these two 
vibrations is that parametric vibration might occur in directions normal to the excitation, while 
forced vibration is understood to appear only in directions parallel to the excitation. 

Later investigations incorporated such factors as different elastic members, such as 
beams, rods, bars, etc; and various boundary conditions, inertia parameters, and different 
forms of excitations. Dugundji and Mukhopadhyay (1973) carried out a study on a 
horizontally-orientated cantilever beam subjected to vertical harmonic excitation of its base 
[4]. 

The equations of motion were reduced to Mathieu equations. This caused combination 
resonance, with primary instability regions defined when exciting such that ωF = Ω1 + Ω2 and 
ωF = Ω2 + Ω3 (ωF is the excitation frequency. Ω1, Ω2 and Ω3 are natural frequencies of the first 
bending, the second bending and the torsional modes of the beam, respectively), with the 
two modes oscillated simultaneously, each at its own frequency Ω1, Ω2 and Ω3. This showed 
that lateral bending and twist could be excited by vertical base motion. Cartmell and Robert 
(1987) theoretically and experimentally investigated the response of a vertically-orientated 
cantilever beam with an attached end mass system subjected to a parametric excitation [5]. 
They also found that the parametric excitation promoted a sum-type combination resonance 
involving two modes of vibration. Analytical studies of the parametrically-excited pendulum 
can be traced back to the work of Leven and Koch (1981). They identified that the pendulum 
behaved in a chaotic way under certain parameter intervals. Miles (1985) analyzed the 
response of a double pendulum system under a parametric excitation through the vertical 
translation of the pivot of the slower pendulum. In his work, the ratio of the natural 
frequencies of the two normal modes approximated 2. His results showed that when the 
lower mode was excited by a principal parametric resonance, the resulting motion may be 
either a simple (rigid-body) translation of the entire system or coupled oscillations of the 
pendulums superimposed on such a translation [7]. Watt and Cartmell (1994) designed a 
single-degree-of-freedom parametric oscillator, onto which was mounted a simple 
mechanical power take-off device, so that the axial input motion could be converted to a 
parametric resonance in the torsional system to transfer energy to an external load, hereby 
acting potentially as a mechanical power transmission. Cartmell and Roberts (1988) 
presented a study of a L-shape beam structure. The structure comprised a horizontal beam 
and a smaller vertical beam. The horizontal beam was clamped at one end and the free end 
was coupled to the vertical beam. Two combination resonances, involving the fundamental 
and second bending modes and the fundamental torsion mode of the structure, could be 
generated when the external excitation of the support was at a frequency in the region of the 
second bending mode frequency of the system when it oscillated in the least stiff plane. 
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The growth of the amplitude of the vibrations during parametric excitation is provided by the 
force that periodically changes the parameter. Parametric resonance is possible when one of 
the following conditions for the frequency  (or for the period T) of modulation is fulfilled; 
 

                
 
In other words, parametric resonance occurs when the parameter changes twice during one 
period, once during one period, twice during three periods, and so on. However, the 
maximum energy transfer to the vibrating system occurs when the parameter is changed 
twice during one period of the natural frequency. In this paper, we are interested in the case, 
in which parametric force has the frequency of twice the natural frequency of the system. 
 
1.2 Methods of stability analysis of parametrically excited system 

 
The governing equations for parametrically excited systems are second order differential 
equations with periodic coefficients, which have no exact solutions. The researchers for a 
long time have been interested to explore different solution methods to this class of problem.             
The two main objectives of this class of researchers are to establish the existence of peri 
odic solutions and their stability. When the governing equation of motion for the system is of 
Matheiu-Hill type, a few well known solution methods those are commonly used are, method 
proposed by Bolotin based on Floquet’s theory, perturbation and iteration techniques, the 
Galerkin’s method, the Lyapunov second method and the asymptotic technique by Krylov, 
Bogoliubov and Mitroploskii. 
     
2. DESIGN OF BORING BAR 
 
2.1 Concept 
 
Our study is based on a model for the suppression of chatter vibrations of boring bar by a 
dynamic absorber with parametric excitation formulated in [11]. Consider a two mass system 
consisting of a main mass MB which is subject to self-excitation vibration and an absorber 
mass MR which is attached to the main mass by a spring element, see Figure 1. The elastic 
mounting KPE of the absorber mass is a combination of a spring and a device operating such 
that the stiffness KPE is changed periodically. Damping is represented by the linear viscous 
damper CR. The main mass MB is supported by a spring with constant stiffness KB; it has a 
linear viscous damper with damping parameter CB. In actual constructions one usually has 
MR < MB. 

 
Figure 1: Interaction between Self-excited and Parametric Vibrations. 

 
The boring process generated self-excited force is acting on the main mass MB. The 
displacements of mass MB and mass MR are denoted by the coordinates xB and xR, 
respectively. The variation of the stiffness of the absorber element is supposed to be a 
harmonic function with small amplitude. 
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Figure 2: The schematic representation of the two mass chain system. 

 
This system is represented by the following nonlinear equations of motion: 
 

                  (1) 
(t)                  (2) 

where:  
KPE: Parametric excitation stiffnes. 
with: M is the mass, C is the damping, K is the stiffness, and the right side of the equation (2) 
represents the cutting force acting on the tip of the boring bar. 

             (3) 
 

(t)                  (4) 
 
where:  

 
The above equations (3) and (4) can be written in matrix form as:  
 

+ +  (5)                                      

 
                                                 (6) 

 
According to the low of regeneration [8] and [9] with the thickness of the chip can be 
expressed by: 
 

 
 
where   the delay time. 
The motion of an n degree-of-freedom system can be represented by a system of second-
order differential equations: 
 

M (t) + C (t) + Kx (t) = fc (t)                                        (7) 
 

Where  and  are the displacement, fc(t) is the excitation force, M (mass matrix), C 

damping matrix) and K (stiffness matrix). 
The boring bar is subjected to a pulsating axial force P (t) = Ps + Pt cos ωF t, acting along 

its lateral side. ωF is the excitation frequency of the dynamic load component, Ps is the static 
and Pt is the time component of the load. 
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Figure 3: Boring bar with boundary conditions         Figure 4: Block diagram of the control.     
                             (fixed-free).                  
 
2.2 Final design 

 
To maintain a high level of static stiffness, it was chosen to adapt the following solution figure 
3 witch use the excitation of the active part of the tool from the back by a rod which receives 
parametric excitation from shaker mounted on the tool holder. 
 

 
          
         Figure 5: CAD model of the boring bar.         Figure 6: Machining configuration. 
 
3. PERFORMANCE EVALUATION  
 
3.1 Analysis method 
 
The evaluation of the novel design compared to the conventional tool has been carried out in 
two steps: at first MOVILOG fft2 with DIVA software has been employed to produce signals 
and to extract the dynamic characteristics of the process machine interaction. The surface 
roughness has been measured after every test with a Mitutoyo Surftest 201 and correlated to 
the vibration signals.  
 

  3.2 Machining tests 
 
The tools have been tested clamped in the same tool holder configurations as modal 
analysis with an overhang of 250 mm and a diameter of 32 mm. Round workpieces made of 
XC38 with a outer diameter of 160 mm, a inner diameter of 100 mm and a length of 60 mm 
were machined. The machining operations were carried out at three different depths of cut 
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ap, 0.5mm, 1mm, 1.5mm. Keeping constant cutting speed Vc at 120 m/min and feed f at 0.2 
mm/tr. The effect of the tool’s damping ratio on the machining process is shown in figure 6 
and figure 7, where the signals produced by machining with conventional and the damped 
tool (under PE and without PE) respectively, are compared. 
  
 

 
     

  Figure 7: Signal produced by machining            Figure 8: Signal produced by machining 
                            with conventional tool.                                    with damped tool.    
                                      

 
 

Figure 9: Time record of signal produced when machining at vc = 120 m/min f= 0.2 mm/rev 
and ap = 1 mm. 

 
4. SURFACE ROUGHNESS  
 
The surface finish produced by the conventional tool is of much lower quality if compared to 
the one produced by the damped tool with parametric excitation. Figure 9 shows the surface 
profile taken after machining at 1 mm; the conventional tool is not able to perform in stable 
conditions and therefore the surface profile is disturbed by the chatter marks.  
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      Figure 10: Surface roughness scans.                      Figure11: Average surface roughness.                                      
                  a) Conventional tool,                                                           
                  b) Damped tool with PE; after machining at                        
                  Vc=120 m/min,  f=0.2mm/rev, and ap= 1mm.                      
 

 
 

Figure 12: Photo of surface finish with chatter marks produced by conventional tool and high 
quality surface finish with damped tool with PE.     

 
5. CONCLUSION 
 
The stability of the linerized boring bar attached element system is investigated by a 
numerical simulations indicate that parametric stiffness excitation has a better effect on 
regenerative chatter suppression. The striking advantage of this application presented is the 
fact that parametric excitation only needs an open loop control system. This might be very 
advantageous for other applications, since it will save the cost, weight and energy for 
sensors and controllers, which might be very important in certain applications. The results of 
experiments carried out show that this new design of boring bar can be a good solution to 
suppress chatter vibrations. 
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