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ABSTRACT ARTICLE INFO

Most advanced technologies developed nowadays focus on issues such as Keywords:
minimizing manufacturing cost and improving product quality. Cooling system Injection molding
design is one of the most critical factors to reduce cycle time. Conformal cool- Conformal cooling
ing is the concept which can reduce cooling time and improve product quality Cooling design

as well. However, cooling system layout is restricted by traditional molding Simulation
method. For cavities with irregular geometry, the distance between cooling

channels and cavity may vary throughout the part. This causes local heat ac- *Corresponding author:
cumulation and some product defects such as sink mark and warpage. By andrewhsu@moldex3d.com
using some non-conventional methods such as laser sintering, cooling chan- (Hsu, F.H.)

nels can get closer to the cavity surface than using traditional method. This
leads to a shorter cooling time. The current study uses a true three dimen-
sional simulator to predict cooling time and compare the results from a con-
ventional and a conformal cooling design. The results also show flow behavior
inside cooling channels which provide important indices for cooling system
design revision. With a shorter cycle time and an improved product quality,
conformal cooling has a great potential in injection molding industry.

© 2013 PEI, University of Maribor. All rights reserved.

1. Introduction

A general trend in injection molding industry is to reduce manufacturing cost and improve
product quality. Injection molding cycle time has a direct relation with manufacturing cost. Dur-
ing the whole injection molding cycle, cooling stage usually takes the longest time. Thus, reduc-
ing cooling time also means cost saving. Common factors related to cooling time are cooling sys-
tem design, mold material, coolant type, coolant temperature, and flow rate etc. Among these
factors, cooling system design variation is possibly the most difficult part by using traditional
molding method.

However, by using techniques such as three dimensional printing and laser sintering proc-
esses, conformal cooling channel is able to be manufactured and getting popular. Dalgarno and
Stewart used indirect selective laser sintering method for conformal cooling channel manufac-
turing. In the two cases they tested, cooling time was drop up to 50 % [1]. Three dimensional
printing is another technique developed by Sachs et al. in MIT [2]. In their experiment, the re-
sults with conformal cooling design show better control on mold temperature than those with-
outit.

As to the design algorithm of conformal cooling channels, there is a general design rule
among distance from cavity to cooling channel, distance between cooling channels and cooling
channel diameter [3]. For cooling channel layout, numerous studies have provided different al-
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gorithms on building an optimized cooling channel [4-7]. In this research, we use two models
with numerical simulations to demonstrate the effects of conformal cooling designs on tool tem-
perature and product deformation.

2. Simulation detail

In this study, the fluids are considered to be incompressible, Newtonian (for water) or general-
ized Newtonian (for polymer melt). The governing equations for 3D transient non-isothermal
motion are:

dp
Piv pu= 1
3t +V-pu=0 (1)
d
5. (P V- (puu+1) =—-Vp+pg (2)
aT
pCp (E +u- VT) = V(kVT) + T]]/z (3)

where u is velocity vector, T is temperature, t is time, p is pressure, T is stress tensor, p is den-
sity, n is viscosity, k is thermal conductivity, C, is specific heat and y is shear rate. For the poly-
mer melt, the stress tensor can be expressed as:

7= —-nVu+ Vul) (4)

The modified-Cross model with Arrhenius temperature dependence is employed to describe
the viscosity of polymer melt:

_ no(T)
1+ (mey/T)t™™

n(T,y) (5)

with

n0(T) = BExp () (6)

where n is the power law index, 1, is the zero shear viscosity, t* is the parameter that describes
the transition region between zero shear rate and the power law region of the viscosity curve.

For the flow inside cooling channels, an incompressible Raynolds-averaged Navier-Stoke
(RANS) model was applied [8]:
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Term w;u; is called turbulent stress. To calculate this term, the Boussinesq hypothesis (linear

eddy viscosity model) was applied to make this term analogous to molecular shear. Introducing
k — & two equation model, we have:

—— aul c')u] 2 (K auk) 5 9
pulu] - I’lt ax] axl 3 Ht a ( )
L2, =2, = K? 10
K=E(u1 +u,” +us ) yt=pCﬂ? (10)

where K is the turbulence kinetic energy and g, is the eddy viscosity, ¢ is dissipation. Cooperate
eq. 11 and eq. 12 into eq. 8, we have the new momentum equation:
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The empirical constants are:
(0k, Cy» 0, Ceq, Cez) = (1.00,0.09,1.30, 1.44,1.92)

The numerical tool, Moldex3D, uses a hybrid finite-difference/control volume/finite element
method. Time step selection has an important effect on accuracy and calculating speed. An in-
ternal parameter was carefully chosen to have a good balance on accuracy and efficiency.

3. Case study

Two models were tested in this study. The models were both built with three dimensional solid
mesh. The total element numbers are 1.05M and 9.33M respectively. Model 1 is validated with
experimental data. Model 2 is used to show the three-dimensional calculation inside cooling
channels.

Model 1 geometry: This is a machine tool cover model. Two cooling systems were designed
and compared to each other (Fig. 1).

Model 1 material: The material used is ABS (Techno ABS350). Ejection temperature is 97 °C.
The modified Cross model is used for modeling the viscosity of polymer melt as functions of
pressure, temperature, and shear rate.

Model 1 processing conditions: The filling time is specified as 0.7 s. Maximum injection pres-
sure is specified as 252 MPa. Melt temperature at sprue entrance is 225 °C. Mold temperature is
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60°C. Packing time is 5s. Packing pressure is 252 MPa. Cooling time is 20s. Mold open time is 5 s.
Air temperature is 25 °C. Cycle time is 30.7 s.

Model 2 geometry: There is a syringe-shape model as shown in Fig. 2. The dimension is 105.22
mm (W) x 162.23 mm (L) x 44.51 mm (H). The average product thickness is 3 mm. Fig. 3 shows
the conformal cooling channel layouts. Fig. 3 also shows the dimension of conformal cooling
channel. The twin-spiral channel has a diameter of 3mm. The distance between the centerlines
of the channels (a) is 12 mm which is four times of the channel diameter. The distances between
center of channels and cavity (c1 and c2) are 3 mm and 10 mm respectively. These parameters
are within the scope of general design rules [3].

Model 2 material: The materialusedis PC (Teijin Panlite L-1225).Ejection temperature is 135°C.

Model 2 processing conditions: The filling time is specified as 0.3 s. Maximum injection pres-
sure is specified as 212 MPa. Melt temperature at sprue entrance is 290 °C. Mold temperature is
100 °C. Packing time is 2.5 s. Packing pressure is 212 MPa. Cooling time is 20 s. Mold open time
is 5 s. Air temperature is 25 °C. Cycle time is 27.8 s.
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Fig. 1 The machine tool cover model: w/ normal cooling (left), w/ conformal cooling (right)
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Fig. 2 The syringe model

Fig. 3 Conformal cooling design
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4. Results and discussion

Let us first discuss the results from model 1. Fig. 4 shows the part surface temperature distribu-
tion at the end of cooling (EOC). The two pictures were set at the same temperature range. This
is the view from the core side where major difference occurs due to the cooling system designs.
We can observe that conformal cooling can lower the part surface temperature significantly.

Fig. 5 shows the cooling efficiencies of channels in normal and conformal designs. The con-
formal cooling channel at core side absorbs 53.7 %
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Fig. 4 EOC part surface temperature distribution: normal cooling (left), conformal cooling (right)
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Fig. 5 Cooling efficiency: normal (left), conformal (right)
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Fig. 6 Partinterior temperature at EOC: normal (left), conformal (right)
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of the total heat. Fig. 6 shows the interior temperature at the end of cooling. The brown areas are
the places where temperature is over 200 °C. It is obvious that the temperature is not much dif-
ferent since the heat spots (shown in circles) do not have any cooling channel pass by for each
cooling system design. The results are also correspondent with the cooling time results. The
maximum cooling time for normal cooling design is 110.3 s and 105.6 s for the conformal design.
However, in reality, it does not need such a long time to eject the part. This simulation had been
validated with experiments. Fig. 7 shows photos of the actual part. The red circle in the right
figure indicates the location of sink mark. The ejection criteria is no sink mark at this area where
the heat spot located. From the actual molding results, 30 s cooling is needed for the normal de-
sign while only 20 s is needed to avoid sink mark appearance. Fig. 8 shows the comparison -
cooling time distribution is almost identical for the two cases.

Fig. 7 Product photo (left), sink mark area (right)
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Fig. 8 Cooling time results: normal w/ 30 s cooling (left), conformal w/ 20 s cooling (right)

The second half of the study is to simulate the coolant behavior inside the channels. Model 2
with spiral cooling channel was simulated. Table 1 shows the results comparing the case of no
cooling channel and conformal cooling channel. Water temperature is 100 °C and flow rate is
120 cm3/s. With conformal cooling channel, part temperature, mold temperature difference,
cooling time, and thermal displacement are all decreased slightly.

Table 1 Results summary (water temperature = 100 °C)

No Cooling w/conformal
EOC part temperature (°C) 101.0-141.7 100.0-135.4
EOC mold temperature (°C) 97.7-125.1 97.7-102.0
Mold temperature difference (°C) 0-38.2 0-32.0
Cooling time (s) 0.3-24.7 0.3-23.5
Total displacement (mm) 0.018-0.202 0.018-0.202
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Fig. 9 Coolant velocity vector distribution - conformal cooling channels
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Fig. 10 Coolant velocity vector (enlarged view) - conformal cooling channels

Fig. 9 and Fig. 10 show the three dimensional coolant velocity vector results. In Fig. 9, we can
see that the velocity range is from 0 cm3/s to 1848.4 cm3/s. The lowest velocity occurs at the
cooling channel surfaces. Fig. 10 shows an enlarged view of the velocity vector in the red win-
dow shown in Fig. 9. It shows no dead water areas in this cooling system design. By checking
velocity results, we can avoid low efficiency cooling system designs in advance.

To further investigate the process parameter effects on cooling efficiency, we change the wa-
ter temperature and flow rate. We first change the water temperature from 100 °C to 80 °C.
From the results shown in Table 2, part temperature, mold temperature difference, cooling time,
and thermal displacement are all decreased more significantly than water temperature of 100 °C.
For example, cooling time has a 12.8 % improvement. Thus, we can conclude that a lower cool-
ant temperature is helpful in removing heat and improving warpage problem.

We then investigate the flow rate effects on coolant temperature. Fig. 11 and 12 show the
coolant temperature at flow rate of 120 cm3/s. Fig. 13 and 14 show the coolant temperature at
flow rate of 12 cm3/s (ten times slower).

Table 2 Results summary (water temperature = 80 °C)

No Cooling w/ conformal
EOC part temperature (°C) 81.6-136.5 80.2-118.9
Mold temperature difference (°C) 0-44.4 0-1.7
Cooling time (s) 0.2-20.3 0.2-17.7
Total displacement (mm) 0.018-0.196 0.016-0.187
Total thermal displacement (mm) 0.059-0.418 0.043-0.341
113
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Fig. 11 Coolant temperature (Q = 120 cm3/s)

If we compare Fig. 12 and Fig. 14 (both set at the same temperature range), we can observe
that temperature rise effect at water outlet is more significant for a lower flow rate.
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Fig. 12 Coolant temperature (Q = 120 cm3/s, slicing view)
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Fig. 13 Coolant temperature (Q = 12 cm3/s)
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Fig. 14 Coolant temperature (Q = 12 cm3/s, slicing view)

5. Conclusion

In this paper, we used a three dimensional numerical scheme to present the advantages of con-
formal cooling design. Two different models were used with a normal and a conformal cooling
design individually. The first model was validated with experimental data with good agreement.
In the second model, coolant properties were predicted, and property effects were studied (wa-
ter temperature and coolant flow rate). The results show that conformal cooling is effective in
reducing cooling time and product displacement. Some functions from CFD are now embedded
in a molding simulator in three dimensional. The prediction of coolant flow behavior is very
helpful in understanding cooling channel efficiency as well as cooling system design revision.
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