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The	 optimization	 of	 bi‐objective	 vehicle	 routing	 problem has	 become a	 re‐
search	 hotspot	 in	 recent	 years.	 In	 this	 paper,	 a	 time‐dependent	 and	 bi‐
objective	 vehicle	 routing	 problem	 with	 time	 windows	 (TD‐BO‐VRPTW)	 is	
proposed,	 which	 is	 a	 new	 extension	 of	 classical	 vehicle	 routing	 problem.
Time‐dependency	is	presented	for	the	situation	that	vehicle’s	travel	speed	is	
affected	by	its	departure	time	and	the	distance	between	two	customers.	The	
total	transportation	costs	and	time	costs	are	two	objectives	optimized	simul‐
taneously	through	constructing	a	bi‐objective	mixed	 integer	 linear	program‐
ming	model.	 To	 deal	 with	 this	 problem,	 the	 non‐dominated	 sorting	 genetic	
algorithm	II	(NSGA‐II)	is	adopted	to	obtain	the	Pareto	optimal	solution	set.	In	
the	 numerical	 examples,	 the	 RC108	 from	 Solomon's	 benchmark	 set	 is	 em‐
ployed	and	the	results	 in	 the	Pareto	 front	show	the	efficiency	of	NSGA‐II	 for	
the	 TD‐BO‐VRPTW.	 To	 further	 test	 the	 performance	 of	 this	 algorithm,	 two	
objectives	are	optimized	separately	and	then	the	sum	of	two	objectives	is	also	
optimized.	Through	comparing	these	results	with	solutions	in	the	Pareto	front,	
it	 can	 be	 concluded	 that	 the	 algorithm	 is	 reliable,	 and	 the	 results	 in	 Pareto	
front	are	competitive	because	there	is	a	trade‐off	between	two	objectives.	
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1. Introduction

The	Vehicle	Routing	Problem	(VRP)	was	first	proposed	by	Dantzig	and	Ramser	in	1959	[1].	It	is	
defined	on	a	network,	in	which	the	points	represent	the	depot	and	customers	and	the	weights	on	
the	arcs	stand	for	the	distance	between	two	points.	The	depot	is	the	start	point	and	end	point	of	
each	 route,	 and	 each	 customer	 has	 a	 demand	 that	must	 be	 served	 by	 a	 vehicle.	 Each	 vehicle	
serves	the	customers	along	its	route	and	the	sum	of	all	demands	on	this	route	cannot	exceed	the	
maximum	capacity.	VRP	aims	to	find	the	optimal	solution	and	thus	the	objective	function	is	op‐
timized	 and	 the	 corresponding	 constraints	 are	 met	 when	 each	 vehicle	 travels	 along	 its	 own	
route.	Zhu	et	al.	proposed	an	improved	hybrid	algorithm	based	on	heuristic	to	solve	VRP	under	
multi‐depots	condition	[2].	Chiang	and	Hsu	considered	that	VRP	combines	the	characteristics	of	
two	typical	NP‐hard	optimization	problems	including	traveling	salesman	problem	(TSP)	and	bin	
packing	problem	(BPP)	[3].	Similar	to	VRP,	TSP	aims	to	find	the	optimal	route,	but	it	only	con‐
siders	the	situation	when	the	number	of	vehicles	is	equal	to	one.	BPP	assigns	customers	to	dif‐
ferent	vehicles	to	minimize	the	number	of	vehicles	and	satisfies	all	the	constraints	at	the	same	
time,	but	it	does	not	consider	the	customer	service	priorities.	

The	 vehicle	 routing	 problem	with	 time	windows	 (VRPTW),	 which	was	 first	 introduced	 by	
Solomon	 in	1987,	 is	an	extension	of	VRP	[4].	 In	 the	VRPTW,	each	customer	 is	assigned	with	a	
time	window	who	must	be	served	within	the	time	window.	Cao	et	al.	solved	the	vehicle	routing	
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problem	with	multiple	fuzzy	time	windows	using	an	improved	wolf	pack	algorithm	[5].	Wu	et	al.	
proposed	 a	 co‐evolutionary	based	 algorithm	and	applied	 it	 to	 solve	VRPTW	 [6].	 Yu	et	al.	 pro‐
posed	an	improved	branch‐and‐price	(BAP)	to	handle	the	VRPTW	with	heterogeneous	fleet	[7].	
Miranda	and	Conceição	proposed	an	extension	of	VRPTW	in	which	the	travel	 time	and	service	
time	are	stochastic	and	solved	it	by	metaheuristic	[8].	In	the	present	study,	we	regard	the	time	
window	as	a	soft	constraint.	If	the	vehicle	arrives	outside	the	time	window,	no	matter	earlier	or	
later,	it	should	pay	for	the	penalty	cost.	Many	real‐world	applications	can	be	considered	as	the	
VRPTW,	such	as	postal	delivery,	train	and	bus	scheduling	as	well	as	waste	collection.	VRPTW	is	a	
typical	NP‐hard	combinatorial	optimization	problem.	Due	to	its	practical	value	and	high	compu‐
tational	complexity,	it	has	become	a	research	hotspot	in	operational	research	and	management	
science.	

The	bi‐objective	vehicle	routing	problem	(BOVRP)	is	another	extension	of	VRP.	The	classical	
way	to	solve	BOVRP	is	to	add	the	two	objectives	together	and	solve	it	as	a	single‐objective	opti‐
mization	problem.	This	method	 is	 essentially	 to	 search	 for	a	 single‐objective	optimal	 solution.	
Another	way	is	to	find	the	Pareto	optimal	solution	set,	which	is	a	trade‐off	between	two	objec‐
tives.	In	this	set,	solutions	are	not	going	to	be	worse	than	any	other	solutions	on	both	objective	
function	values	simultaneously.	Geiger	was	one	of	 the	 first	 researchers	solving	multi‐objective	
vehicle	routing	problem	by	using	Pareto	approaches	[9].	Then	Barán	and	Schaerer	proposed	a	
multi‐objective	 ant	 colony	 algorithm	 to	minimize	 the	 number	 of	 vehicles,	 travel	 distance	 and	
service	 time	 simultaneously	 [10].	Tan	et	al.	 put	 forward	a	hybrid	multi‐objective	 evolutionary	
algorithm	(HMOEA)	to	deal	with	BOVRP,	in	which	the	two	objectives	are	number	of	vehicles	and	
travel	distance	[11].	Ombuki	et	al.	designed	a	multi‐objective	genetic	algorithm	to	minimize	the	
number	 of	 vehicles	 and	 travel	 distance	 [12].	 Garcia‐Najera	 and	 Bullinaria	 proposed	 a	 multi‐
objective	evolutionary	algorithm	(MOEA),	which	is	characterized	by	considering	individual	simi‐
larity	 in	 the	selection	process	 [13].	Chiang	and	Hsu	proposed	a	knowledge‐based	evolutionary	
algorithm	 to	 solve	 bi‐objective	 vehicle	 routing	 problem	 with	 time	 windows,	 minimizing	 the	
number	of	vehicles	and	travel	distance	[3].	Qi	et	al.	proposed	a	memetic	algorithm	based	on	de‐
composition	 and	 applied	 it	 to	 solve	multi‐objective	 VRPTW	 [14].	 Iqbal	 et	al.	 proposed	 a	 new	
model	for	multi‐objective	VRP,	and	solved	it	on	the	basis	of	local	search	[15].	Some	researchers	
considered	the	minimization	of	time	window	constraint	violations	as	an	objective.	For	example,	
Xu	et	al.	optimized	the	constraint	violation	and	two	other	objectives	by	an	Or‐opt	NSGA‐II	[16].	
Castro	et	al.	considered	the	constraint	violation	of	vehicle	capacity	and	time	window	as	two	ob‐
jectives	[17].	

The	time‐dependent	vehicle	routing	problem	(TDVRP)	was	initially	proposed	by	Malandraki	
and	Daskin	 to	 capture	 the	 congestion	 in	 a	 traffic	 network	 [18].	Hill	 and	Benton	 constructed	 a	
model	 for	 time‐dependent	 conditions,	 which	 lays	 the	 foundation	 of	 many	 studies	 [19].	
Malandraki	 and	 Dial	 solved	 TSP	 under	 time‐dependent	 conditions	 by	 dynamic	 programming	
[20].	However,	all	of	the	above	studies	disrespect	the	First‐In‐First‐Out	(FIFO)	principle,	indicat‐
ing	that	it	is	possible	that	a	vehicle	departing	later	arrives	earlier.	Ichoua	et	al.	proposed	a	time‐
dependent	model	 in	which	travel	speed	is	a	step	function	and	travel	time	is	a	piecewise	linear	
function	[21].	Fleishmann	et	al.	proposed	a	method	to	construct	time‐dependent	model	in	which	
the	travel	time	was	smoothed	by	a	step	function	[22].	These	methods	respect	the	FIFO	principle.	
These	two	methods	are	widely	used	in	studies	afterwards.	Then,	Huang	et	al.	proposed	the	con‐
ception	of	path	flexibility	for	TDVRP	and	solved	it	by	CPLEX	[23].	Çimen	and	Soysal	extended	the	
conception	of	TDVRP	to	stochastic	conditions	and	proposed	a	heuristic	to	solve	it	[24].	

Based	on	previous	research,	we	combine	 the	bi‐objective	optimization,	 the	 time‐dependent	
travel	time	model	and	the	time	window	as	well	as	innovatively	propose	the	time‐dependent	and	
bi‐objective	vehicle	routing	problem	with	time	windows	(TD‐BO‐VRPTW).	 In	the	remainder	of	
this	paper,	we	first	give	a	detailed	description	of	the	TD‐BO‐VRPTW	in	Section	2.	In	Section	3,	we	
introduce	the	notion	of	NSGA‐II.	Our	main	results	are	given	in	Section	4.	Finally,	Section	5	con‐
tains	a	brief	summary.	
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2. Problem description and model construction 

This	section	mainly	 includes	 the	notion	of	 time‐dependent	 travel	 time	model,	 the	definition	of	
parameters	and	decision	variables,	assumptions	and	mathematical	model.	

2.1 Time‐dependent travel time model 

As	mentioned	previously,	Malandraki	and	Daskin	first	proposed	the	conception	of	 time‐dependent	
travel	 time	model	 [18].	 Fig.	 1	 shows	 the	 relationship	between	 travel	 time	and	departure	 time	
when	the	distance	is	1,	presenting	that	the	travel	time	between	two	points	is	a	step	function	of	
departure	time.	The	main	feature	of	this	model	is	that	it	does	not	respect	the	FIFO	principle.	For	
example,	 a	 vehicle	 leaving	 at	ݐଵ ൌ 1	will	 arrive	 at	ݐଶ ൌ 4,	 while	 a	 vehicle	 leaving	 at	ݐଷ ൌ 2	will	
arrive	at	ݐସ ൌ 3.	Hill	and	Benton	proposed	another	time‐dependent	model	in	which	travel	speed	
is	a	step	function	of	the	departure	time,	as	shown	in	Fig.	2.	This	model	still	disrespects	the	FIFO	
principle	 [19].	 In	 order	 to	 give	 a	 better	 description	 of	 time‐dependency,	 adjustment	 of	 travel	
speed	should	be	taken	into	account	when	vehicle	travels	beyond	the	bounds	of	the	time	inter‐
vals.	Ichoua	et	al.	proposed	a	time‐dependent	travel	time	model	in	which	travel	speed	is	a	step	
function	and	travel	time	is	a	piecewise	linear	function,	as	shown	in	Fig.	3	and	Fig.	4	[20].	
	

	

Fig.	1	Time‐dependent	model	I	 Fig.	2	Time‐dependent	model	II	
	
	

Fig.	3	Time‐dependent	model	III:	Speed	
	

Fig.	4	Time‐dependent	model	III:	Time	
	

	
Fig.	3	shows	the	relationship	between	travel	speed	and	departure	time,	and	Fig.	4.	provides	

an	example	of	travel	time	function	for	an	arc	of	length	1.	For	a	non‐time‐dependent	and	symmet‐
rical	road	model,	travel	time	of	an	arc	ሺݒ௜, ௜௝ݐ	as	expressed	simply	be	can	௝ሻݒ ൌ ݀௜௝ ⁄௜௝ݒ ,	where	ݒ௜௝	
is	the	average	travel	speed	on	arc	ሺݒ௜, ,௜ݒሺ	arc	of	distance	the	is	݀௜௝	and	௝ሻݒ ‐time	in	However,	௝ሻ.ݒ
dependent	model,	 travel	speed	changes	with	departure	time.	Suppose	the	departure	time	is	ݐ଴,	
and	travel	speed	is	a	step	function	of	departure	time,	wherein	speed	of	the	k‐th	time	period	is	ݒ௜௝

௞ ,	
corresponding	 to	 the	 departure	 time	 interval	 for	ሾݐ௞, 	.௞ାଵሿݐ Then,	 the	 process	 of	 calculation	 is	
expressed	as	follows:	

Step	1:	Calculate	the	value	of	k	according	to	ݐ଴ ∈ ሾݐ௞, ௜௝ݒ	corresponding	the	get	and	௞ାଵሿ,ݐ
௞ ,	assign	

݀௜௝ → ݀,	calculate	ݐᇱ ൌ ଴ݐ ൅ ݀ ௜௝ݒ
௞⁄ .	

Step	2:	If	ݐᇱ ൑ 	,௞ାଵݐ then	output	arrival	 time	ݐᇱ	and	 travel	 time	ݐᇱ െ 	end	଴,ݐ the	 loop.	Otherwise,	
go	to	Step3.	
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Step	3:	Update	݀௜௝ െ ௜௝ݒ
௞ ሺݐ௞ାଵ െ ଴ሻݐ → ݀,	 calculate	ݐᇱ ൌ ௞ାଵݐ ൅ ݀ ௜௝ݒ

௞ାଵ⁄ ,update	݇ ൅ 1 → ݇,	 return	
to	Step	2.	

This	time‐dependent	model	respects	the	FIFO	principle.	Compared	with	the	former	two	time‐
dependent	models,	 it	 can	better	capture	congestion	 in	a	 traffic	network.	Therefore,	we	choose	
this	model	for	further	study.	

2.2 Assumptions and symbolic descriptions 

The	following	assumptions	will	be	needed	throughout	the	paper:	

 Travel	speed	is	variable,	and	there	are	multiple	time	intervals.	Speed	in	a	certain	time	in‐
terval	is	constant.	

 Each	customer	is	assigned	with	a	time	window	and	vehicles	arriving	in	advance	or	beyond	
the	deadline	must	pay	for	penalty	cost.	

 Each	customer	must	be	served	exactly	once	by	one	vehicle.	
 Each	vehicle	must	depart	from	the	depot	and	return	to	the	depot	after	completing	the	de‐

livery	task.	
 Vehicles	 are	 homogeneous,	 and	 the	 constraints	 of	maximum	driving	distance	 and	maxi‐

mum	driving	time	are	not	considered.	

Based	 on	 the	 above	 assumptions,	 the	 present	 study	 aims	 to	minimize	 transportation	 costs	
and	 time	 costs.	 Transportation	 costs	 include	depreciation	 costs	 and	 fuel	 costs,	 and	 time	 costs	
include	waiting	costs	and	penalty	costs.	Since	the	problem	involved	in	the	current	work	is	essen‐
tially	a	derivative	model	of	classical	VRPTW,	it	can	be	described	by	the	traditional	network	fluid	
formula	system	as	follows	[25]:		

Let	ܩ ൌ ሺܸ, ‐There	set.	point	the	is	{௡ାଵݒ,…,ଵݒ,଴ݒ}	=ܸ	where	graph,	complete	a	represents	ሻܦ
fore,	the	subset	ܥ={ݒଵ,ݒଶ,…,ݒ௡ାଵ}	are	the	customers.	Then,	define	the	node	sets	 ଴ܸ={ݒ଴,ݒଵ,…,ݒ௡}	
and	 ௡ܸାଵ={ݒଵ,ݒଶ,…,ݒ௡ାଵ},	 and	 arc	 set	ܦ={ሺݒ௜, ,௜ݒሺ	௝ሻ|ݒ ௜ݒ|௝ሻݒ ∈ ଴ܸ,ݒ௝ ∈ ௡ܸାଵ,݅ ് ݆}.	 Each	 vehicle	
݇ ∈ 	,Besides	ܳ.	capacity	maximum	a	has	ܭ each	customer	݅ ∈ 	has	ܥ a	demand	ݍ௜ ൒ 0,	 a	 service	
time	ݏ௜ ൒ 0	and	a	time	window	[݁௜,݈௜].	The	depot	also	has	a	time	window	ሾ0, ௠ܶ௔௫ሿ.	The	distance	
of	arc	ሺݒ௜, ௝ሻݒ ∈ ‐de	vehicle’s	the	is	ܿௗ	and	distance,	unit	per	cost	fuel	vehicle’s	the	is	ܿ௙	݀௜௝.	is	ܦ
preciation	cost.	݌௘	is	the	waiting	cost	per	unit	time,	and	݌௟	is	the	penalty	cost	per	unit	time.	

2.3 Mathematical model 

First,	we	define	two	decision	variables:	

 Binary	decision	variable	ݔ௜௝
௞ , ∀݇ ∈ ,ܭ ∀݅ ∈ ଴ܸ, ∀݆ ∈ ௡ܸାଵ.		

௜௝ݔ
௞ ൌ ൝

1	If	vehicle	݇	travels	from	customer	݅	to	customer	݆
	

0	Otherwise
	

 Non‐negative	real	decision	variable	݅ݕ
݇:	The	departure	time	after	vehicle	k	has	served	cus‐

tomer	i.	

According	to	the	previous	time‐dependent	model,	travel	speed	on	arc	ሺݒ௜, 	of	function	a	is	௝ሻݒ
the	 departure	 time	ݒ௜௝ሺݕ௜ሻ	and	 then	 travel	 time	 can	 be	 denoted	 by	݀௜௝ 	and	ݒ௜௝ሺݕ௜ሻ,	 i.e.	
,௜௝(݀௜௝ݐ ,௜௝(݀௜௝ݐ	function	time	travel	and	௜ሻݕ௜௝ሺݒ	function	speed	Travel	௜ሻ).ݕ௜௝ሺݒ 	step	a	are	௜ሻ)ݕ௜௝ሺݒ
function	and	a	piecewise	linear	function,	respectively.	Based	on	this	notation,	the	TD‐BO‐VRPTW	
can	be	constructed	as	the	following	bi‐objective	mixed	integer	linear	programming	model:	
Objective	functions:	

݉݅݊ ଵ݂ ൌ 	෍෍෍ܿ௙ݔ௜௝
௞ ݀௜௝

௞௝௜

൅ ܿௗ෍෍ݔ଴௝
௞

௝௞

	 (1)

	

݉݅݊ ଶ݂ ൌ ሺ݁௜	ݔ௘෍݉ܽ݌ െ
௜

௜ݕ
௞ ൅ ,௜ݏ 0ሻ ൅ ሺݔ௟෍݉ܽ݌

௜

௜ݕ
௞ െ ௜ݏ െ ݈௜, 0ሻ	 (2)
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Constrains:	

෍ ෍ ௜௝ݔ௜ݍ
௞ ൑ ܳ, ∀݇ ∈ ܭ

௝∈௏೙శభ௜∈஼

	 (3)

 

෍ ෍ ௜௝ݔ
௞ ൌ 1, ∀

௝∈௏೙శభ௞∈௄

݅ ∈ 	ܥ (4)

 

෍ݔ௜௛
௞ െ ෍ ௛௝ݔ

௞ ൌ 0, ∀݄ ∈ ,ܥ ∀݇ ∈ ܭ
௝∈௏೙శభ௜∈௏బ

	 (5)

 

௜଴ݔ
௞ ൌ ௡ାଵ,௜ݔ

௞ ൌ 0, ∀݅ ∈ ,ܥ ∀݇ ∈ 	ܭ (6)
 

෍ݔ଴௜
௞ ൌ෍ݔ௜,௡ାଵ

௞ ൑ 1, ∀݇ ∈ ܭ
௜∈஼௜∈஼

	 (7)

 

൬ݕ௜
௞ ൅ ௜௝ݐ ቀ݀௜௝, ௜ݕ௜௝൫ݒ

௞൯ቁ൰ ௜௝ݔ
௞ ൑ ௝ݕ

௞ െ ,௝ݏ ∀݅ ∈ ଴ܸ, ∀݆ ∈ ௡ܸାଵ∀݇ ∈ 	ܭ (8)
 

௜௝ݔ
௞ ∈ ሼ0,1ሽ, ∀݅ ∈ ଴ܸ, ∀݆ ∈ ௡ܸାଵ∀݇ ∈ 	ܭ (9)

 

௜ݕ
௞ ൒ 0, ∀݅ ∈ ܸ, ∀݇ ∈ 	ܭ (10)

	

The	objective	function	(Eq.	1)	minimizes	the	transportation	costs,	and	the	objective	function	
(Eq.	2)	minimizes	the	time	costs.	Expressions	(Eq.	3)	are	the	maximum	capacity	constraints,	in‐
dicating	that	for	each	route,	the	sum	of	all	demands	cannot	exceed	the	maximum	capacity.	Con‐
straints	(Eq.	4)	ensure	that	each	customer	is	visited	exactly	once	by	one	vehicle.	Constraints	(Eq.	
5)	 and	 (Eq.	6)	 are	 the	vehicle	 flow	conservation	 constraints.	Constraints	 (Eq.	7)	 stipulate	 that	
each	vehicle	can	be	used	at	most	once.	Expressions	(Eq.	8)	are	the	arrival	time	constraint,	indi‐
cating	that	a	vehicle	must	arrive	at	the	next	customer	earlier	than	its	service	start	time.	Expres‐
sions	(Eq.	9)	and	(Eq.	10)	are	variable	specification	constraints.	

3. Used methods 

Recently,	 the	non‐dominated	sorting	genetic	algorithm	II	(NSGA‐II)	proposed	by	Deb	has	been	
extensively	 responded	 and	 applied	 [26].	 The	 selection	 process	 of	 individuals	 is	 improved	 by	
employing	the	elite	strategy,	density	value	estimation	strategy	and	fast	non‐dominated	sorting	
strategy.	This	genetic	algorithm	has	been	widely	used	in	various	fields.	 It	not	only	ensures	the	
value	of	the	optimal	solution	and	obtains	the	Pareto	front,	but	also	reduces	the	algorithm	com‐
plexity	 and	 ensures	 the	 efficiency	 of	 the	 algorithm.	 It	 has	 become	 a	 classical	 algorithm	 in	 the	
field	of	multi‐objective	optimization.	Therefore,	this	algorithm	is	adopted	to	solve	the	problem.	
This	section	mainly	introduces	integer	linear	programming,	NSGA‐II	and	its	related	conceptions.	

3.1 Introduction to integer linear programming and NSGA‐II 

Integer	linear	programming	indicates	that	the	values	of	some	or	all	decision	variables	in	linear	
programming	are	integers.	Integer	linear	programming	is	mostly	NP‐hard.	Therefore,	when	the	
scale	of	the	problem	is	large,	it	will	be	difficult	to	solve	the	problem.	Integer	linear	programming	
is	an	important	issue	in	operations	research.	In	recent	decades,	numerous	scholars	have	studied	
the	solution	to	solve	this	problem.	The	most	commonly	used	method	is	the	heuristic	algorithm,	
whose	principle	is	to	find	a	feasible	solution	within	an	acceptable	range.	The	advantage	is	that	
the	convergence	speed	is	fast,	and	the	disadvantage	is	that	it	may	fall	into	local	optimum.	Com‐
mon	heuristic	algorithms	include	genetic	algorithm,	tabu	search,	simulated	annealing,	etc.	
 The	NSGA‐II	algorithm	was	proposed	based	on	genetic	algorithm.	The	non‐dominated	sorting	
approach	is	put	forward	in	order	to	give	every	solution	in	the	population	a	non‐domination	rank.	
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The	non‐domination	rank	starts	at	1	and	increases	by	1	each	round.	In	each	round	of	the	loop,	
every	unsorted	individual	p	in	the	population	is	compared	with	all	the	remaining	unsorted	indi‐
viduals	to	determine	whether	the	individual	݌	dominates	all	the	other	unsorted	individuals.	If	so,	
individual	݌	is	 assigned	 with	 the	 current	 non‐domination	 rank.	 Finally,	 all	 individuals	 in	 the	
population	are	assigned	with	a	non‐domination	rank.	

Additionally,	crowding	distance	is	also	defined	in	NSGA‐II	to	get	an	estimate	of	the	density	of	
solutions	surrounding	a	particular	solution.	In	terms	of	bi‐objective	optimization,	calculate	the	
average	distance	of	two	points	on	either	side	of	a	particular	point	along	each	objective.	This	val‐
ue	can	be	regarded	as	the	sum	of	the	adjacent	two	sides	of	a	rectangle	formed	by	two	adjacent	
solutions	on	both	sides	of	a	particular	solution	as	vertices.	As	presented	in	Fig.	5,	the	crowding	
distance	of	the	th	i‐th	solution	is	equal	to	half	the	perimeter	of	the	rectangle	formed	by	its	two	
adjacent	solutions	as	vertices,	as	shown	by	dashed	line.	

Each	 solution	 is	 assigned	with	a	 crowding	distance	by	 calculation.	 For	 individuals	with	 the	
same	non‐dominated	rank,	the	larger	the	crowding	distance,	the	better	the	diversity.	Therefore,	
it	should	be	preferred	in	the	selection	process.	Based	on	the	definition	of	non‐domination	rank	
݅௥௔௡௞	and	 crowding	 distance	݅ௗ௜௦௧௔௡௖௘,	 two	 solutions	݅	and	݆	in	 the	 population	 can	 be	 compared	
using	the	comparison	operator:	

	݅ ≺ ݆	
	if:	݅௥௔௡௞	<	݆௥௔௡௞	
	or:	݅௥௔௡௞	=	݆௥௔௡௞	and	݅ௗ௜௦௧௔௡௖௘	>	݆ௗ௜௦௧௔௡௖௘	
	

That	is,	in	the	selection	process	of	the	algorithm,	it	is	preferred	when	a	solution	has	a	lower	
non‐domination	rank.	Otherwise	when	the	two	solutions	have	the	same	non‐dominated	rank,	we	
prefer	the	solution	with	larger	crowding	distance	due	to	its	better	diversity.	

	
Fig.	5	Crowding	distance	

	
3.2 Main loop 

The	main	loop	of	NSGA‐II	can	be	found	in	Fig.	6.	

	
Fig.	6	Main	loop	
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First,	 generate	 the	 initial	population	 ଴ܲ,	which	contains	ܰ	solutions.	Then,	 the	population	 is	
sorted	based	on	domination,	and	each	solution	is	assigned	with	a	non‐domination	rank.	An	off‐
spring	population	ܳ଴	of	size	ܰ	is	created	by	selection,	crossover	and	mutation	operators.	These	
two	populations	are	combined	to	get	ܴ଴ ൌ ଴ܲ ∪ ܳ଴.	Finally,	the	population	ܴ଴	is	trimmed	based	
on	non‐domination	rank	and	crowding	distance	to	ensure	that	the	population	is	the	same	size	at	
the	beginning	of	each	iteration.		

4. Results and discussion 

Solomon's	benchmark	set	is	widely	used	in	VRP,	which	consists	of	56	instances	categorized	into	
6	sets.	Each	instance	includes	1	depot	and	100	customers.	According	to	the	spatial	distribution	
of	 customers,	 these	 instances	 can	be	divided	 into	3	 categories	 including	C	 (clustered),	R	 (ran‐
dom)	and	RC	(mixed).	It	is	assumed	that	the	travel	speed	of	all	arcs	conforms	to	a	unified	time‐
dependent	step	 function.	The	 time	window	of	depot	ሾ0, ௠ܶ௔௫ሿ	ሺ ௠ܶ௔௫ ൌ 240ሻ	is	divided	 into	 five	
intervals	on	average,	and	the	average	speed	of	each	interval	is	[1,	1.6,	1.05,	1.6,	1].	In	this	paper,	
RC108	is	selected	to	test	the	performance	of	the	algorithm.	In	this	instance,	customers	are	clus‐
tered	and	randomly	distributed,	the	maximum	capacity	of	vehicle	ܳ	is	200,	and	the	service	time	
	.10	is	௜ݏ

All	the	experiments	are	based	on	MATLAB	R2017a,	and	the	algorithm	parameters	are	set	as	
follows:	Population	size	ܲ݁ݖ݅ݏ݌݋ ൌ 100,	maximum	number	of	iterations	ݔܽܯݎ݁ݐܫ ൌ 500,	crosso‐
ver	 probability	݌௖ ൌ 0.5 	and	 mutation	 probability	݌௠ ൌ 0.1 .	 Vehicle’s	 fuel	 cost	 per	 unit	
tance	ܿ௙ ൌ 0.5,	depreciation	cost	ܿௗ ൌ 50,	the	time	cost	coefficient	 is	݌௘ ൌ 0.5	and	݌௟ ൌ 5.	Fig.	7	
represents	the	first	non‐dominated	front,	namely	Pareto	front.	There	are	27	solutions	in	the	Pa‐
reto	optimal	set.	Table	1	shows	the	detailed	data.	

The	results	in	Fig.	7	show	that	these	two	objectives	 ଵ݂	and	 ଶ݂	are	not	positively	correlated.	If	
the	two	objectives	change	in	the	same	direction,	some	solutions	will	be	better	on	both	objectives	
and	thus	the	number	of	Pareto	solutions	becomes	small.	There	are	27	solutions	in	Pareto	front,	
indicating	that	the	two	objectives	are	contradictory	to	some	extent.	For	one	objective	to	become	
better,	it	is	necessary	to	take	the	other	to	become	worse.	

To	 further	compare	the	performance	of	 the	algorithm,	we	use	single‐objective	optimization	
algorithm	to	optimize	 ଵ݂	and	 ଶ݂	respectively.	We	use	the	classical	genetic	algorithm	to	carry	out	
this	 experiment.	The	 relevant	parameters	 are	 set	 as	before.	 First,	 ଵ݂	is	 optimized	and	 the	 final	
optimization	result	 is	shown	in	Fig.	8.	The	left	 figure	represents	the	optimal	routes,	where	the	
square	and	circles	represent	the	depot	and	customers	respectively,	and	the	right	 figure	stands	
for	 the	 change	of	 the	objective	 function	 ଵ݂	with	 the	number	of	 iterations.	 Fig.	 9	 is	 obtained	by	
optimizing	 ଶ݂.	The	detailed	route	of	each	vehicle	and	the	values	of	 ଵ݂	and	 ଶ݂	are	shown	in	Table	2	
and	Table	3.	Finally,	 ଵ݂	and	 ଶ݂	are	added	together	as	one	objective	and	optimized.	The	results	are	
shown	in	Table	4	and	Fig.	10.	

	
Fig.	7		Pareto	front	
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Table	1	Detailed	data	of	Pareto	front	

Solution	No.	
Values	of	Pareto	optimal	solutions		

ଵ݂	 ଶ݂	

1	 2047.2581	 1445.5884	
2	 2158.6574	 1266.6068	
3	 2159.2772	 1258.6648	
4	 2167.7613	 996.1304	
5	 2168.3811	 988.1884	
6	 2184.0555	 954.5300	
7	 2185.5761	 934.0495	
8	 2268.4119	 583.7399	
9	 2268.8158	 502.9485	
10	 2276.2644	 502.6524	
11	 2276.8878	 499.6613	
12	 2287.2728	 494.8850	
13	 2295.2586	 489.3503	
14	 2296.7619	 480.1851	
15	 2316.6997	 450.1220	
16	 2317.8669	 444.9339	
17	 2325.2467	 370.6427	
18	 2337.3527	 367.2576	
19	 2345.8875	 352.2281	
20	 2345.8913	 348.4370	
21	 2453.7982	 265.2944	
22	 2492.1418	 253.8482	
23	 2499.1596	 220.4622	
24	 2500.9599	 208.9021	
25	 2526.6566	 207.1993	
26	 2532.5440	 195.3103	
27	 2545.1208	 190.0310	

	
	

	 	
Fig.	8	Results	when	optimizing	 ଵ݂	
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Fig.	9	Results	when	optimizing	 ଶ݂	

	

	
Fig.	10	Results	when	optimizing	 ଵ݂ ൅ ଶ݂	

	
Table	2	Detailed	data	of	optimal	solution	when	optimizing	 ଵ݂		

Vehicle	No.	 Optimal	routes	and	the	value	of	 ଵ݂ and	 ଶ݂ when	optimizing	 ଵ݂		
1	 0‐49‐19‐23‐21‐24‐22‐91‐0	
2	 0‐98‐69‐82‐52‐17‐12‐47‐78‐7‐61‐0	
3	 0‐92‐31‐34‐28‐32‐85‐20‐64‐0	
4	 0‐68‐96‐94‐93‐56‐84‐95‐0	
5	 0‐51‐76‐63‐33‐30‐26‐29‐27‐0	
6	 0‐100‐88‐1‐5‐4‐45‐2‐6‐46‐79‐73‐0	
7	 0‐15‐16‐9‐11‐97‐13‐59‐65‐83‐0	
8	 0‐60‐14‐8‐3‐39‐42‐70‐0	
9	 0‐44‐43‐40‐35‐36‐37‐38‐41‐72‐0	
10	 0‐58‐10‐53‐55‐81‐54‐0	
11	 0‐99‐74‐75‐89‐66‐80‐0	
12	 0‐57‐18‐48‐25‐77‐87‐86‐90‐0	
13	 0‐50‐62‐67‐71‐0	

ଵ݂	 1564.0496	

ଶ݂	 3909.1340	
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Table	3	Detailed	data	of	optimal	solution	when	optimizing	 ଶ݂		

Vehicle	No.	 Optimal	routes	and	the	value	of	 ଵ݂	and	 ଶ݂	when	optimizing	 ଶ݂	
1	 0‐52‐8‐65‐9‐4‐0
2	 0‐85‐67‐97‐56‐80‐0
3	 0‐14‐76‐86‐74‐55‐0
4	 0‐21‐61‐3‐13‐0
5	 0‐5‐73‐22‐28‐0
6	 0‐48‐57‐66‐50‐1‐0
7	 0‐64‐38‐71‐94‐46‐0
8	 0‐27‐10‐72‐0
9	 0‐83‐19‐12‐51‐60‐0
10	 0‐92‐78‐77‐58‐45‐0
11	 0‐29‐35‐2‐91‐0
12	 0‐17‐79‐96‐34‐0
13	 0‐15‐30‐93‐37‐0
14	 0‐47‐95‐49‐26‐0
15	 0‐23‐100‐53‐25‐0
16	 0‐44‐84‐99‐6‐68‐0
17	 0‐18‐87‐32‐0
18	 0‐69‐82‐88‐70‐40‐33‐0
19	 0‐11‐59‐98‐62‐63‐0
20	 0‐7‐20‐36‐0
21	 0‐89‐24‐31‐54‐0
22	 0‐16‐90‐43‐41‐39‐0
23	 0‐75‐81‐42‐0
ଵ݂	 3572.6748
ଶ݂	 48.6028

	
Table	4	Detailed	data	of	optimal	solution	when	optimizing	 ଵ݂ ൅ ଶ݂		

Vehicle	No.	 Optimal	routes	and	the	value	of	 ଵ݂	and	 ଶ݂	when	optimizing	 ଵ݂ ൅ ଶ݂		
1	 0‐28‐71‐99‐5‐0
2	 0‐92‐98‐74‐58‐11‐55‐0
3	 0‐33‐83‐17‐93‐0
4	 0‐36‐38‐40‐41‐10‐80‐0
5	 0‐13‐22‐75‐20‐0
6	 0‐39‐35‐96‐29‐0
7	 0‐73‐8‐78‐59‐54‐0
8	 0‐53‐60‐51‐63‐0
9	 0‐6‐49‐43‐0
10	 0‐64‐57‐19‐82‐46‐0
11	 0‐31‐69‐90‐1‐0
12	 0‐76‐84‐56‐95‐67‐70‐0
13	 0‐89‐21‐97‐23‐0
14	 0‐44‐42‐3‐25‐0
15	 0‐79‐24‐47‐0
16	 0‐62‐81‐2‐37‐0
17	 0‐16‐66‐85‐34‐0
18	 0‐15‐9‐87‐86‐52‐32‐0
19	 0‐14‐12‐88‐30‐26‐0
20	 0‐7‐4‐27‐91‐0
21	 0‐77‐48‐18‐45‐100‐68‐0
22	 0‐72‐61‐94‐50‐65‐0
ଵ݂	 3115.7205
ଶ݂	 132.0221

	
According	 to	 Table	 1,	 Table	 2	 and	 Table	 3,	when	 ଵ݂	is	 optimized,	 the	 optimal	 solution	 ଵ݂ ൌ	

1564.0496	and	 the	 corresponding	 ଶ݂ ൌ 3909.1340;	 when	 ଶ݂	is	 optimized,	 the	 result	 is	 ଵ݂ ൌ	
3572.6748	and	 ଶ݂ ൌ 48.6028.	 Obviously,	 when	 optimization	 is	 carried	 out	 with	 one	 objective,	
the	 other	 objective	will	 be	 significantly	worse,	which	 is	 consistent	with	 the	 previous	 analysis	
that	 ଵ݂	and	 ଶ݂	are	contradictory.	For	example,	when	 ଵ݂	is	optimized,	the	value	of	optimal	solution	
is	1564.0496,	which	is	better	than	all	the	solutions	in	Pareto	front.	However,	the	corresponding	
ଶ݂	is	3909.1340,	which	is	worse	than	the	worst	in	Pareto	front,	i.e.	1445.5884.	The	same	goes	for	
the	situation	when	 ଶ݂	is	optimized.	From	Fig.	8	and	Fig.	9,	we	can	also	find	that	when	 ଵ݂	is	opti‐
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mized, the routes with shorter distance is preferred. When 𝑓𝑓2 is optimized, the routes with 
shorter interval between time windows of customers are preferred. Above all, it can be conclud-
ed that not as extreme as the single-objective optimal solution, bi-objective optimization is a 
trade-off between two objectives.  

Additionally, based on Table 1 and Table 4, when we regard 𝑓𝑓1 and 𝑓𝑓2 as one objective, the 
value of optimal solution is 𝑓𝑓1 = 3115.7205 and 𝑓𝑓2 = 132.0221, which is close to the No. 1 solu-
tion in Pareto front. Moreover, 132.0221 is better than any other solutions in Pareto front while 
3115.7205 is worse than the all. This is because the impact of 𝑓𝑓1 and 𝑓𝑓2 on the total cost is not 
the same. When we add the two objectives together, the algorithm will give priority to optimiz-
ing the objective that has a greater impact on total cost, namely 𝑓𝑓2. We can also see that no mat-
ter the objective is 𝑓𝑓1 or 𝑓𝑓2 or 𝑓𝑓1 + 𝑓𝑓2, the optimal solution cannot dominate any solutions in the 
Pareto front, indicating that the optimal solutions obtained by NSGA-II is competitive. From the 
above analysis, we can conclude that the algorithm adopted in this paper is effective, and the 
results obtained by Pareto approach are credible.  

5. Conclusion 
The VRP has become a classical optimization problem in recent decades due to its high computa-
tional complexity and practical value. In the present study, a time-dependent and bi-objective 
vehicle routing problem with time windows (TD-BO-VRPTW) is proposed based on the existing 
research, and a bi-objective mathematical model is formulated. The calculation process of travel 
time under time-dependent conditions and the main loop of bi-objective optimization algorithm 
are given. In the numerical experiment, an instance in Solomon benchmark set is selected to test 
the performance of our algorithm. The objectives are to minimize transportation costs and time 
costs. Meanwhile, two objectives are optimized separately and are added together for optimiza-
tion for making the comparison. It is shown that the results of bi-objective optimization are 
competitive. 

Further research is needed. For example, there are many complex factors that need to be con-
sidered, such as nonhomogeneous fleet and multiple depots. The definition of time-dependency 
can also be extended to random or regional time-dependency, etc. In addition, related studies 
have demonstrated that NSGA-II is less efficient when the number of objective increases and 
there are some difficulties in balancing convergence and diversity preservation. Future research 
can test the algorithm performance of different multi-objective optimization algorithms. Moreo-
ver, in the case of an emergency, there may be path failure and reconnection or other effects, 
which are also the focus of future research. 
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