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A B S T R A C T	   A R T I C L E   I N F O	

Spillover	 effect	 can	 lead	 to the	 free‐riding	 behavior	 when	 joint	 investment	
takes	place	in	the	supply	chain.	This	study	examined	the	investment	strategies	
of	two	competitive	retailers	who	considered	whether	to	invest	a	shared	con‐
tract	manufacturer	(CM)	or	not.	The	supply	chain	members’	operational	deci‐
sions	in	four	scenarios	were	analyzed	through	a	Cournot	competition	model,	
and	the	paths	of	the	retailers’	investment	strategies	were	examined.	The	CM’s	
capacity	portfolio	optimization	was	NP‐hard	in	nature,	and	was	modelled	by	
an	 investment	 portfolio	 problem.	 Results	 show	 that	 both	 retailers	 jointly	
invest	the	CM	only	when	the	difference	of	production	costs	is	not	high,	and	the	
intentions	of	 joint	 investment	will	decrease	when	the	coefficient	of	spillover	
and	the	degree	of	substitutability	between	products	increase.	The	CM	always	
benefits	as	long	as	one	retailer	invests,	and	allocates	more	investment	on	the	
capacity	with	 highest	 revenue	when	he	 emphasizes	more	 on	 the	 profit.	 For	
optimizing	 the	CM’s	capacity	portfolio	problem,	an	artificial	 fish	swam	algo‐
rithm	with	 uniform	mutation	 (AFSA_UM)	 is	 developed	 and	 it	 shows	 better	
convergent	performance	and	higher	robustness	than	the	basic	AFSA.	
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1. Introduction 

Joint	 investment	 has	 been	 frequently	witnessed	 in	 the	 supply	 chain,	 where	 several	members	
(e.g.,	retailers	in	the	downstream)	might	invest	to	a	shared	partner	(e.g.,	a	manufacturer	in	the	
upstream).	 Investment	could	vary	 in	different	kinds,	 such	as	 financial	 injection,	advertisement	
subsidy,	 investment	 on	 the	most	 up‐to‐date	 equipment,	 and	 cooperation	 on	 the	 R&D	 of	 new	
product	etc.	[1,	2].	Joint	investment	could	benefit	all	members	in	the	supply	chain,	such	as	lower‐
ing	the	production	costs,	increasing	the	market	share	by	providing	lower	retailing	prices	to	the	
customers,	thus	performing	better	than	the	price‐based	coordination	[3].	

Despite	the	merits	of	joint	investment,	there	are	two	questions	for	both	the	investor	and	the	
investee	 in	 the	supply	chain.	For	 the	 investor,	she	could	be	surprised	to	 find	that	her	effort	 in	
some	activities	could	benefit	her	competitors	in	the	same	industries.	For	example,	in	2012,	Intel	
and	Samsung	jointly	provided	$4.4	billion	to	ASML	(the	largest	manufacturer	of	wafer	steppers	
and	scanners	 for	microchip	 fabrication	 in	 the	world)	 through	a	“Customer	Co‐Investment	Pro‐
gram”	to	accelerate	a	450	mm	technology	and	a	next‐generation	EUV	development	project.	How‐
ever,	the	ASML	claimed	that	the	results	of	development	projects	and	capacity	investment	would	
be	available	to	every	semiconductor	company	with	no	restrictions.	For	the	ASML	(the	investee),	
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he	has	to	consider	the	loss	brought	by	the	obsolete	risk	of	production	capacity.	For	example,	the	
capacity	 to	produce	450	mm	chips	might	be	outdated	quickly	due	to	 the	change	of	market	de‐
mand.	When	offered	several	kinds	of	capacity	with	different	production	rate	and	obsolete	loss,	
the	AMSL	has	to	carefully	determine	the	proportion	of	each	capacity	by	balancing	the	revenue	
and	loss	with	the	consideration	of	budget	constraint.		

This	study	is	motivated	by	the	ASML	case.	In	this	study,	Intel	and	Samsung	are	referred	as	the	
retailers,	who	have	the	incentives	to	 invest	the	ASML	or	free	ride	the	competitor’s	investment.	
The	ASML	is	referred	as	the	shared	contract	manufacturer	(CM)	who	is	at	the	upstream	of	the	
supply	chain	and	optimizes	the	capacity	portfolio	after	receiving	the	retailers’	investment.	There	
are	two	questions	worthy	of	investigation:	(1)	What	the	retailers’	 investment	decisions	will	be	
when	 spillover	 effect	 exists?	 Jointly	 invest,	 invests	 alone	or	 free	 rides?	 (2)	How	could	 the	CM	
optimize	the	capacity	portfolio	when	given	multiple	production	capacity	with	different	combina‐
tions	of	production	output	(equivalently,	 revenue)	and	obsolete	risk	(equivalently,	 loss)?	With	
these	two	questions	 in	mind,	 this	study	considers	a	supply	chain	consisted	of	 two	competitive	
retailers	and	a	shared	CM.	In	this	supply	chain,	both	retailers	compete	to	sell	the	products	with	a	
certain	 degree	 of	 substitutability	 in	 the	market,	 either	 retailer	 could	 free	 ride	 the	 other	 one’s	
investment	in	reducing	the	production	cost	due	to	the	spillover	effect.	Once	the	CM	receives	the	
investment,	he	should	appropriately	spilt	the	retailers’	 total	amount	of	 investment	on	multiple	
production	capacities	for	maximizing	his	revenue	while	minimizing	the	loss.		

The	 rest	 of	 this	 study	 is	 organized	 as	 follows.	 In	 section	 2,	 the	 relevant	 literatures	 are	 re‐
viewed.	In	section	3,	the	supply	chain	members’	decisions	in	four	scenarios	are	firstly	analysed	
under	the	Cournot	model,	and	then	the	paths	of	retailers’	investment	decisions	are	investigated.	
The	CM’s	capacity	portfolio	problem	is	described	through	a	classic	investment	portfolio	model,	
and	an	artificial	fish	swam	algorithm	(AFSA)	improved	by	the	uniform	mutation	is	developed	to	
optimize	the	problem.	In	section	4,	numerical	studies	are	carried	out	to	investigate	the	manage‐
rial	insights.	In	section	5,	the	conclusions	and	future	researches	are	given.	

2. State of the art 

In	recent	decades,	many	researchers	have	carried	out	voluminous	studies	on	the	investment	in	
the	field	of	operation	management	(OM)	[4].	The	literatures	related	to	this	study	can	be	catego‐
rized	into	the	following	two	streams:		

The	first	stream	of	studies	mainly	focused	on	the	influence	of	spillover	effect	on	the	players’	
operational	 decisions	when	 they	 compete	 in	 the	 same	market.	Due	 to	 the	 spillover	 effect,	 the	
player	who	did	not	invest	could	have	the	opportunity	to	free	ride	the	outcome	of	the	other	one’s	
investment	on	some	activities	(e.g.,	R&D	and	cost	reduction).	Actually,	the	spillover	effect	was	so	
prevailing	in	the	R&D	investment	that	many	researchers	paid	their	attentions	in	this	field	in	the	
past	decade.	Those	who	were	interested	in	this	topic,	we	refer	the	studies	given	by	[5‐8].	In	re‐
cent	decade,	researchers	found	that	the	spillover	effect	also	existed	in	the	operational	decisions	
in	the	supply	chain	field.	For	example,	the	spillovers	in	process	knowledge	increased	the	likeli‐
hood	of	observing	decentralized	channel	structures	under	some	conditions	(e.g.,	spillovers	were	
involuntary,	firms’	innovative	activities	were	non‐overlapping,	and	firms	benefited	directly	from	
the	results	of	competitors’	innovations)	[9].	In	a	supply	chain	where	an	original	equipment	man‐
ufacturer	 (OEM)	 and	 a	 CM	 competed	 in	 the	 finished	 goods	market,	 the	 technology	 spillovers	
could	strengthen	the	OEM’s	 incentive	to	strategically	outsource	the	production	to	the	CM	[10].	
Under	a	wholesale	price	contract,	both	firms	in	the	supply	chain	could	achieve	win‐win	via	car‐
telization	 in	R&D	only	 if	 their	contribution	 levels	were	Pareto	matched	(e.g.,	when	each	 firm’s	
contribution	level	was	comparable	to	its	partner’s	even	when	spillover	existed)	[11].	However,	
the	 degree	 of	 competition	 might	 change	 the	 players’	 operational	 decisions.	 For	 example,	 the	
manufacturer’s	improvement	effort	usually	declined	in	market	competition,	market	uncertainty	
or	spillover	effect,	although	its	expected	profit	typically	increased	in	spillover	effect	[12].	In	the	
situation	when	two	rival	firms’	operations	and	technology	managers	were	given	bonuses	for	cost	
reduction,	the	prisoner’s	dilemma	occurred	in	case	spillovers	were	less	than	50%,	or	when	spill‐
overs	were	higher	and	process	improvement	capability	was	relatively	high	[13].	In	the	situation	
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when	 two	 competing	 firms	 invested	 in	 a	 shared	 supplier,	 the	 spillover	 actually	 discouraged	
firms’	investment	despite	that	it	supposedly	intensified	competition	[14].	However,	in	the	work	
of	[15],	after	investigating	the	effect	of	learning,	spillover	and	competition	in	affecting	the	opti‐
mal	strategies	for	two	firms	to	invest	in	their	shared	suppliers,	the	investment	strategies	of	two	
firms	were	characterized	by	a	region	of	preemption	and	a	region	of	war	of	attrition.		

The	second	stream	 focused	on	 the	optimization	of	 capacity	portfolio	problem,	which	was	a	
branch	of	capacity	management	and	concerned	with	specifying	the	amounts	or	locations	for	the	
given	multiple	capacity	 types	[16].	For	some	capacity‐intensive	 industries	(e.g.,	 semiconductor	
manufacturing),	capacity	portfolio	planning	could	significantly	affect	 the	capacity	effectiveness	
and	final	profit	via	forecasting	various	demands	of	products	[17].	From	the	point	of	investment’s	
view,	balancing	the	production	system’s	revenue	(profit)	and	risk	(loss)	was	the	critical	consid‐
eration	of	the	decision	maker	who	aimed	to	optimize	the	capacity	portfolio	under	different	set‐
tings	of	environments	[18].	However,	it	was	difficult	to	optimize	the	capacity	portfolio,	because	
it	was	NP	hard	in	nature	to	determine	the	sizes	or	proportions	among	different	types	of	capacity	
with	budget	constraints.	Some	researchers	modelled	the	capacity	portfolio	problems	by	various	
kinds	of	mixed‐integer	problems.	For	example,	 in	[19],	the	capacity	portfolio	problem	was	for‐
mulated	a	two‐stage	stochastic	mixed‐integer	model	when	the	production	system	faced	multiple	
demands	with	associated	probability,	then	a	robust	stochastic	programming	approach	was	pro‐
posed	to	solve	problem.	Similarly,	a	mixed	integer	linear	programming	was	proposed	in	[18]	to	
seek	an	optimal	capacity	allocation	plan	and	capacity	expansion	policy	under	single‐stage,	multi‐
generation,	and	multi‐site	structures.	Some	researchers	modelled	the	capacity	portfolio	problem	
as	a	Markov	decision	process,	and	solved	the	optimal	investment	levels	on	two	types	of	capacity	
(mainly	 the	dedicated	and	 flexible	 capacity)	 through	efficient	dynamical	programming	 [20]	or	
heuristic	algorithm	[21],	or	robust	optimization	 [22,	23].	When	there	were	multiple	capacities	
(such	 as	dedicated,	 flexible	 and	 reconfigurable	 capacity)	 to	 be	 invested,	 the	 capacity	 portfolio	
problem	 turned	 to	 be	 a	mixed	 integer	 programming	model	 [24],	 and	hence,	 heuristic	method	
could	be	adopted	to	obtain	the	optimal	solution.		

Most	published	studies	on	the	spillover	effect	in	the	supply	chain	field	focused	on	the	invest‐
ment	decisions,	supplier’s	reliability,	or	increasing	the	quality	of	product	from	the	perspective	of	
the	investors	(e.g.,	retailers	in	this	study).	Few	studies	paid	attention	to	the	spillover	effect	could	
alter	 the	 investors’	 decisions	 on	 investing	 or	 free	 riding,	 and	 hence,	 the	 path	 of	 investors’	 in‐
vestment	strategies	were	lack	of	investigating.	On	the	other	hand,	investee	(e.g.,	the	shared	CM	
in	this	study)	might	optimize	the	capacity	portfolio	when	given	more	than	two	types	of	capacity	
associated	 with	 different	 combination	 of	 revenue	 and	 loss.	 In	 this	 study,	 we	 adopt	 the	 game	
model	to	analytically	show	the	investors’	(e.g.,	the	retailers)	investment	decisions	and	the	path	
of	changing	investment	decisions	when	considering	the	competitors’	advantage	or	disadvantage.	
We	model	the	investee’s	(e.g.,	the	CM)	capacity	portfolio	problem	by	the	classic	investment	port‐
folio	problem,	which	is	solved	through	an	artificial	fish	swam	algorithm	(AFSA)	improved	by	the	
uniform	mutation.	

3. Methodology 	
3.1 Operational decisions in four scenarios 

In	this	study,	we	consider	a	supply	chain	with	two	competitive	retailers	and	a	shared	CM.	Each	
retailer	 is	 intent	 to	 lower	 the	 production	 cost	 by	 investing	 or	 free	 riding	 the	 competitor’s	 in‐
vestment	due	to	the	spillover	effect.	To	describe	the	retailers’	competitive	behaviour,	we	follow	
the	assumption	in	[25]	where	the	Retailer	i’s	retailing	price,	݌௜	could	be	given	by	

,௜ݍ௜൫݌ ௝൯ݍ ൌ ܽ െ ௜ݍ െ ,௝ݍܾ ݅ ൌ 1, ݎ݋ 2; ݆ ൌ 3 െ ݅	 (1)

where	ܽ	denotes	the	potential	demand	of	two	products	in	the	market,	ݍ௜	and	ݍ௝	are	the	ordering	
quantities,	ܾ	is	 the	degree	of	substitutability	between	two	products.	ܾ	ranges	between	0	and	1.	
The	 larger	 value	of	ܾ	is,	 the	more	 substitutable	 of	 the	products	 are	 to	 the	 customers,	 thus	 the	
high	market	competition	is.		
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ܿ௜	denotes	the	initial	production	cost	when	the	Retailer	i	does	not	invest	the	CM.	For	simplici‐
ty	but	without	loss	of	generality,	we	assume	ܿଵ ൌ ܿ	and	ܿଶ ൌ ܿଵ ൅ ‐produc	of	difference	the	is	ߜ	.ߜ
tion	costs	between	two	products.	ߜ ൐ 0	denotes	that	the	Retailer	1	enjoys	a	cost	advantage	over	
Retailer	2	in	production	cost,	vice	versa.		

We	assume	that	the	spillover	effect	takes	place	in	production	process.	Because	both	retailers	
share	the	same	CM,	one	retailer	could	have	the	opportunity	of	enjoying	a	lower	production	cost	
by	free	riding.	ܥ௜	denotes	the	production	cost	after	the	retailers	provide	the	investment,	which	is	
given	by		

௜ܥ ൌ ܿ௜ െ ௜ݔ െ 	௝ݔߙ (2)

where	ݔ௜	and	ݔ௝	are	the	levels	of	cost	reduction	that	the	Retailer	i	and	j	want	to	achieve	by	invest‐
ing	 the	CM,	 respectively.	ߙ	is	 the	 coefficient	of	 spillover.	ߙ	ranges	between	0	and	1.	The	 larger	
value	of	ߙ	is,	the	higher	spillover	effect	is,	thus	leading	to	Retailer	i’s	higher	free‐riding	behavior.	
By	 the	Eq.	 	is	௜ܥ	,2 the	 result	 of	 both	 retailers’	 joint	 investment	 decisions.	 Furthermore,	we	 as‐
sume	the	Retailer	 i’s	 investment	is	quadratic	in	the	level	of	production	cost	reduction	[11,	26].	
Due	to	the	spillover	effect,	each	retailer	has	an	incentive	to	free	ride	the	other	one’s	investment.	
Thus,	ߩ௜ݔ௜

ଶ	is	the	Retailer	 i's	 investment	on	the	CM	for	achieving	ݔ௜.	ߩ௜	is	a	parameter	related	to	
the	investment	and	ߩ௜ ൒ 1.	The	Retailer	i	does	not	invest	any	when	ݔ௜ ൌ 0.		

When	the	Retailer	i	invests	the	CM,	her	profit	is	given	by	

,௜ݍ௜ሺߨ ௜ݔ ሻ ൌ ሺ݌௜ െ ௜ݍ௜ሻݓ െ ௜ݔ௜ߩ
ଶ	 (3)

where	ݓ௜	is	the	wholesale	price	that	CM	sets	for	Retailer	i.	The	CM’s	profit	is	shown	as	follow:	

,ଵݓெሺߨ ଶݓ ሻ ൌ෍ ሺݓ௜ െ ௜ݍ௜ሻܥ
ଶ

௜ୀଵ
	 (4)

We	assume	that	the	retailers	compete	under	Cournot	competition	model,	 thus	the	retailer’s	
ordering	 quantities	 are	 determined	 simultaneously.	 The	 retailing	 prices	 could	 be	 determined	
through	 the	 backward	 induction.	 Note	 that,	 we	 assume	 that	 all	members	 in	 the	 supply	 chain	
have	complete	knowledge	of	the	game	participants.	Consider	the	question	of	whether	to	invest	
the	CM	or	not,	each	retailer	has	two	options:	Yes	or	No	(denoted	as	Y	or	N).	Therefore,	there	are	
four	 scenarios:	 the	 YY	 scenario	where	 both	 retailers	 invest	 the	 CM;	 the	 YN	 and	NY	 scenarios	
where	only	retailer	invests	the	CM	and	the	other	free	rides;	and	the	NN	scenario	where	no	one	
invests	the	CM.		

We	start	with	the	derivation	of	the	retailers’	and	CM’s	equilibrium	decisions	in	the	YY	scenar‐
io.	As	both	retailers	invest	the	CM,	the	Retailer	i’s	production	cost	is	given	by	the	Eq.	2.	The	Re‐
tailer	 i	aims	to	maximize	her	profit	 in	Eq.	3.	Take	first	and	second	order	derivatives	of	ߨ௜	with	
respect	to	ݍ௜,	we	could	have	ߨ௜	is	convex	in	ݍ௜.	Therefore,	the	Retailer	i’s	optimal	ordering	quan‐
tity	is	given	by	ݍ௜൫ݍ௝	൯ ൌ

ଵ

ଶ
൫ܽ െ ௝ݍܾ െ 		:below	in	reformulated	be	can	which	௜൯,ݓ

,௜ݓ௜൫ݍ ൯	௝ݓ ൌ
ܽሺ2 െ ܾሻ െ ݅ݓ2 ൅ ݆ݓܾ

4 െ ܾଶ
	 (5)

By	inserting	the	Eq.	5	into	Eq.	3,	we	have	the	Retailer	i’s	profit,	ߨ௜ሺݔ௜	ሻ ൌ ௜ݍ
ଶ െ ௜ݔ௜ߩ

ଶ.		
Now,	it	is	the	CM’s	turn	to	optimize	his	profit.	The	CM	aims	to	maximize	his	profit	by	consid‐

ering	 the	 Retailer	 i’s	 optimal	 ordering	 quantity	ݍ௜൫ݓ௜, 	.൯	௝ݓ The	 CM’s	 profit	 is	 given	 by	
ெߨݔܽ݉ ൌ ∑ ൫ݓ௜ െ ܿ௜ െ ௜ݔ െ ,௜ݓ௜൫ݍ൯	௝ݔߙ ൯	௝ݓ

ଶ
௜ୀଵ .	 By	 taking	 the	 first	 order	 derivative	 of	ߨெ	with	

respect	to	ݓ௜,	we	have	the	optimal	wholesale	price	ݓ௜൫ݔ௜, 	by	given	is	which	i,	Retailer	the	for	൯	௝ݔ

,௜ݔ௜൫ݓ ൯	௝ݔ ൌ
௔ା௖೔ି௫೔ିఈ௫ೕ

ଶ
.	Insert	ݓ௜൫ݔ௜, 	is	which	profit,	i’s	Retailer	the	have	we	and	5,	Eq.	into	൯	௝ݔ

ሻ	௜ݔ௜ሺߨ ൌ ቂ
௔ሺଶି௕ሻିଶ௖೔ା௕௖ೕା௫೔ሺଶି௕ఈሻି௫೔

ଶሺସି௕మሻ
ቃ
ଶ
െ ௜ݔ௜ߩ

ଶ.		

By	summarizing	the	results	above,	we	have	the	proposition	1.	
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Proposition	1:	In	the	YY	scenario,		

(1) To	make	sure	that	the	Retailer	i’s	ordering	quantity	is	positive,	the	difference	of	production	
costs	 should	 be	 bounded,	 i.e.,	ߜଵ ൑ ߜ ൑ ଶߜ ,	 where	ߜଵ ൌ ሺܽ െ ܿሻሺ1 െ 2/ܾሻ	and	ߜଶ ൌ ሺܽ െ
ܿሻሺ1 െ ܾ/2ሻ.	

(2) 
ப௤೔ሺ௫೔ሻ

ப௫ೕ
൑ 0	when	ߙ ൑ ܾ/2,	and	

ப௤೔ሺ௫೔ሻ

ப௫ೕ
൒ 0	when	ߙ ൐ ܾ/2.	

(3) the	Retailer	 i’s	profit	 is	 strictly	 concave	 in	ݔ௜ .	Therefore,	her	optimal	decision	 is	ݔ௜൫ݔ௝൯ ൌ
ሺଶିఈ௕ሻൣ௔ሺଶି௕ሻିଶ௖೔ା௕௖ೕି௫ೕሺ௕ିଶఈሻ൧

ଶఘ೔ሺସି௕మሻమିሺଶିఈ௕ሻమ
	for	a	given	ݔ௝.	

By	Proposition	1,	we	could	backwardly	derive	the	retailers	and	CM’s	optimal	decisions	in	the	
YY	Scenario,	which	are	given	in	Table	1.		

The	procedures	of	deriving	the	operational	decisions	 in	YN,	NY	and	NN	scenarios	are	same	
with	those	in	YY	scenario.	Therefore,	we	omit	the	derivations	for	saving	the	pages.	The	retailers’	
and	CM’s	operational	decisions	in	four	scenarios	are	summarized	in	Table	1.	

Table	1	The	Supply	Chain’s	operational	decisions	in	four	scenarios	
	 YY	Scenario	 NY	Scenario	 YN	Scenario	 NN	Scenario	

	ଵݔ
ଶܤଵܣଵሺܦ െ ଶሻܦଵܦଶܣ

ଶܤଵܤ െ ሺܦଵܦଶሻଶ
	 0	

ଵܦଵܣ
ଵܤ

	 0	

	ଶݔ
ଵܤଶܣଵሺܦ െ ଶሻܦଵܦଵܣ

ଶܤଵܤ െ ሺܦଵܦଶሻଶ
	

ଶܦଶܣ
ଶܤ

	 0	 0	

	ଵ݌ ଵݓ ൅ 	ଵݍ

	ଶ݌ ଶݓ ൅ 	ଶݍ

	ଵݍ
2ሺ4 െ ܾଶሻଶߩଵሺܣଵܤଶ െ ଶሻܦଵܦଶܣ

ଶܤଵܤ െ ሺܦଵܦଶሻଶ
	

ሺܣଵܤଶ െ ଶሻܦଵܦଶܣ

2ሺ4 െ ܾଶሻܤଶ
	 ଵሺ4ߩ2 െ ܾଶሻ

ଵܣ
ଵܤ
	

ଵܣ
2ሺ4 െ ܾଶሻ

	

	ଶݍ
2ሺ4 െ ܾଶሻଶߩଶሺܣଶܤଵ െ ଶሻܦଵܦଵܣ

ଶܤଵܤ െ ሺܦଵܦଶሻଶ
	 ଶሺ4ߩ2 െ ܾଶሻ

ଶܣ
ଶܤ
	

ሺܣଶܤଵ െ ଶሻܦଵܦଵܣ

2ሺ4 െ ܾଶሻܤଵ
	

ଶܣ
2ሺ4 െ ܾଶሻ

	

	ଵݓ
1
2
ቊܽ ൅ ܿଵ െ

ଵܤଶሺܣଵሾܦ െ ଶሻܦଵܦߙ ൅ ଵܤߙଵሺܣ െ ଶሻሿܦଵܦ

ଶܤଵܤ െ ሺܦଵܦଶሻଶ
ቋ	

1
2
ሺܽ ൅ ܿଵ െ 	ଶሻݔߙ

1
2
ሺܽ ൅ ܿଵ െ 	ଵሻݔ

1
2
ሺܽ ൅ ܿଵሻ	

	ଶݓ
1
2
ቊܽ ൅ ܿଶ െ

ଶܤଵሺܣଵሾܦ െ ଶሻܦଵܦߙ ൅ ଵܤߙଶሺܣ െ ଶሻሿܦଵܦ

ଶܤଵܤ െ ሺܦଵܦଶሻଶ
ቋ	

1
2
ሺܽ ൅ ܿଶ െ 	ଶሻݔ

1
2
ሺܽ ൅ ܿଶ െ 	ଵሻݔߙ

1
2
ሺܽ ൅ ܿଶሻ	

	ଵߨ
ଶܤଵܣଵሺܤଵߩ െ ଶሻଶܦଵܦଶܣ

ሾܤଵܤଶ െ ሺܦଵܦଶሻଶሿଶ
	

ሺܣଵܤଶ െ ଶሻଶܦଵܦଶܣ

ሾ2ሺ4 െ ܾଶሻܤଶሿଶ
	

ଵܣଵߩ
ଶ

ଵܤ
	

ଵܣ
ଶ

ଵܤ
ଶ	

	ଶߨ
ଵܤଶܣଶሺܤଶߩ െ ଶሻଶܦଵܦଵܣ

ሾܤଵܤଶ െ ሺܦଵܦଶሻଶሿଶ
	

ଶܣଶߩ
ଶ

ଶܤ
	

ሺܣଶܤଵ െ ଶሻଶܦଵܦଵܣ

ሾ2ሺ4 െ ܾଶሻܤଵሿଶ
	

ଶܣ
ଶ

ଵܤ
ଶ	

	ெߨ ෍ ሺݓ௜ െ ܿ௜ ൅ ௜ݔ ൅ ௜ݍଷି௜ሻݔߙ
ଶ

௜ୀଵ
	

3.2 Paths of the retailers’ investment strategies  

In	 this	 section,	we	start	with	 the	analysis	of	 the	path	 that	 the	Retailer	1	 changes	her	decision	
from	NN	to	YN	scenario.	Apparently,	Retailer	1	decides	 to	 invest	 the	CM	only	when	her	profit	
increases	 in	 YN	 scenario	 compared	with	 that	 in	NN	 Scenario,	 i.e.,	ߨଵ

௒ே െ ଵߨ
ேே ൐ 0	should	 hold.	

From	Table	1,	ߨଵ
௒ே െ ଵߨ

ேே ൐ 0	holds	only	when	ߜ ൐ ଵݍ	have	we	Further,	ଶ.ߜ
௒ே െ ଵݍ

ேே ൐ 0,	which	
means	the	Retailer	1	will	always	order	more	products	when	she	invests	the	CM.	

We	investigate	the	CM’s	benefit	when	Retailer	1	invests.	From	Table	1,	we	have	ݓ௜
௒ே െ ூݓ

ேே ൏
0,	which	means	that	the	CM	will	lower	the	wholesale	prices	to	both	retailers	as	long	as	Retailer	1	
invests.	 Let	∆Pெ௜

௒ேିேே ൌ ൫ݓ௜
௒ே െ ௜൯ܥ െ ൫ݓ௜

ேே െ ܿ௜൯	be	 the	 CM’s	 difference	 of	 marginal	 profits	
when	he	wholesales	the	product	to	the	Retailer	 i	 in	YN	and	NN	scenarios.	We	could	prove	that	
∆Pெ௜

௒ேିேே ൐ 0.	Obviously,	the	CM’s	marginal	profits	will	always	increase	when	the	Retailer	1	in‐
vests	 the	CM.	 Further,	 the	 difference	 of	 the	CM’s	 profits,	ߨெ

௒ே െ ெߨ
ேே	is	 strictly	 positive.	 There‐

fore,	the	CM’s	profit	always	increases	as	long	as	one	retailer	invests.		
Corollary	1	summarizes	the	results	above.		
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Corollary	 1:	 Compared	with	 the	 operational	 decisions	 in	 the	NN	 scenario,	 in	 the	 YN	 scenario	
where	the	Retailer	1	invests	the	CM,	

(1)	 The	CM	offers	 lower	wholesale	prices	 for	both	retailers	when	only	the	Retailer	1	provides	
the	investment.	He	could	increase	the	marginal	and	total	profits	concurrently.		

(2)	 The	Retailer	1	always	orders	more	in	YN	scenario	than	she	does	in	NN	scenario,	and	she	en‐
joys	a	higher	profit	only	when	ߜ ൐ 	.CM	the	invest	not	will	she	otherwise,	ଵ;ߜ

Corollary	1	shows	the	path	of	 the	Retailer	1’s	 investment	strategy	 from	NN	to	YN	scenario.	
We	find	that,	in	YN	scenario,	the	Retailer	1	could	benefit	in	two	folds:	(i)	she	orders	(also	sells)	
more	products,	enjoys	higher	market	share,	thus	deterring	the	competition	from	the	Retailer	2.	
(ii)	She	could	have	higher	profit	by	investment.		

We	could	derive	the	path	of	Retailer	2	when	she	change	her	investment	decision	from	NN	to	
NY	scenario	 in	 the	same	way.	For	saving	pages,	we	omit	 the	derivation	and	give	 the	results	 in	
Corollary	2.	

Corollary	 2:	 Compared	with	 the	 equilibrium	 decisions	 in	 the	NN	 scenario,	 in	 the	NY	 scenario	
where	only	the	Retailer	2	invests	the	CM,		

(1) The	CM	offers	lower	wholesale	prices	for	both	retailers.	He	could	increase	the	marginal	and	
total	profit	concurrently.	

(2) The	Retailer	2	will	always	orders	more	in	YN	scenario	than	she	does	in	NN	scenario,	and	she	
invests	the	CM	when	ߜ ൏ 	.CM	the	invest	not	will	she	otherwise,	ଶ;ߜ

Corollary	2	shows	that	 the	Retailer	2	changes	her	 investment	strategy	 from	NN	scenario	 to	
NY	scenario	under	two	situations:	(i)	the	Retailer	1’s	cost	advantage	is	not	high,	and	(ii)	the	Re‐
tailer	1	is	obvious	cost	disadvantageous.	Both	situations	should	satisfy	ߜ ൏ 		.ଶߜ

Since	both	retailers	compete	in	the	market,	no	one	would	like	her	investment	to	be	free	rode	
by	the	other	one.	Therefore,	 joint	 investment	would	be	the	ideal	equilibrium	state	 for	both	re‐
tailers.	To	 investigate	 the	dynamic	path	by	which	one	retailer	quits	 free	 riding	and	enters	 the	
equilibrium	state	of	YY	scenario,	we	compare	the	equilibrium	decisions	in	NY	(YN)	and	YY	sce‐
narios.		

To	make	 sure	 that	 the	Retailer	 1	 stays	 in	 YY	 scenario,	 her	 profit	 in	 YY	 scenario	 should	 be	
more	 than	 that	 in	NY	 scenario	 (i.e.,	ߨଵ

௒௒ െ ଵߨ
ே௒ ൐ 0	should	hold).	 From	Table	 ଵߨ	,1

௒௒ െ ଵߨ
ே௒ ൐ 0	

holds	when	ߜ ൐
ሺ௔ି௖ሻሺଶି௕ሻሺ஻మି஽భ஽మሻ

௕஻మାଶ஽భ஽మ
ଵݍ	.

௒௒ െ ଵݍ
ே௒ ൐ 0	always	holds.		

Corollary	3	summarizes	the	results	above.		
	

Corollary	3:	The	Retailer	1	enters	into	the	equilibrium	state	of	YY	scenario	from	NY	scenario	only	

when	ߜ ൐ ଷߜ	where	ଷ,ߜ ൌ
ሺ௔ି௖ሻሺଶି௕ሻሺ஻మି஽భ஽మሻ

௕஻మାଶ஽భ஽మ
.	In	this	case,	the	Retailer	1	will	not	only	 increase	the	

profit,	but	also	increase	the	ordering	quantities.		
Corollary	3	indicates	that	the	Retailer	1	will	jointly	invest	the	CM	with	Retailer	2	only	when	

her	cost	advantage	is	above	a	threshold	over	the	Retailer	2’s	production	cost	(i.e.,	ߜ ൐ 		.(ଷߜ
Similarly,	we	could	analyse	the	path	of	the	Retailer	2	to	jointly	invest	the	CM	with	Retailer	1.	

For	saving	the	pages,	we	only	presents	the	results	in	Corollary	4.		
	

Corollary	4:	The	Retailer	2	will	quit	the	equilibrium	state	of	YN	scenario	and	enter	into	the	equi‐

librium	 state	 of	 YY	 scenario	 only	when	ߜ ൏ ସߜ	where	ସ,ߜ ൌ
ሺ௔ି௖ሻሺଶି௕ሻሺ஻భି஽భ஽మሻ

ଶ஻మା௕஽భ஽మ
.	When	 compared	

with	the	YN	scenario,	the	Retailer	2	will	 increase	her	profit,	but	 increase	her	ordering	quantities	
only	when	ߙ ൐ ܾ/2.		

Corollary	4	indicates	that	the	Retailer	2	will	jointly	invest	the	CM	with	Retailer	1	only	when	
the	 Retailer	 1’s	 cost	 advantage	 should	 not	 be	 above	 a	 threshold	 over	 her	 production	 cost	
(i.e.,	ߜ ൏ 		.(ସߜ
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3.3 The CM’s capacity portfolio optimization based on AFSA_UM 

Shown	by	Corollary	1	to	4,	the	CM	always	benefits	as	long	as	one	retailer	invests.	However,	the	
CM	 still	 has	 to	 carefully	 split	 the	 retailers’	 investment	 on	 different	 types	 of	 capacity	 before	
launching	the	production.	The	reasons	is	that	each	capacity	varies	in	the	production	output	and	
obsolete	risk,	thus	the	potential	revenue	and	loss	is	different	to	each	capacity.	

For	 simplicity	without	 loss	 of	 generality,	we	 assume	 that	 the	 total	 amount	 of	 retailers’	 in‐
vestment	to	be	one,	and	the	CM	allocates	the	investment	on	n	 types	of	capacity	( ௝ܵ, ݆ ൌ 1,… , ݊)	
with	different	proportion	(ݕ௝).	For	 the	capacity	 ௝ܵ,	 the	potential	 revenue	and	 loss	are	ݎ௝	and	ݑ௝.	
The	total	revenue	of	CM	is	given	by	ܸ ൌ ∑ ௝ݎ௝ݕ

௡
௝ୀଵ ,	and	the	maximal	risk	of	CM’s	investment	allo‐

cation	is	given	by	ܷ ൌ ଵஸ௝ஸ௡ݔܽ݉ 	investment	the	allocating	in	objective	CM’s	the	Therefore,	௝.ݑ௝ݕ
turns	into	a	classic	portfolio	optimization	problem,	which	is	maximizing	the	total	revenue	while	
minimizing	the	maximal	risk.	According	to	[27],	 the	CM’s	capacity	portfolio	optimization	prob‐
lem	could	be	modelled	by	

ܨݔܽ݉ ൌ ܸߚ ൅ ሺ1 െ ,ሻܷߚ .ݏ ෍.ݐ ௝ݕ
௡

௝ୀଵ
ൌ 1, ௝ݕ ൒ 0, ݆ ൌ 1,… , ݊		 (6)

where	ߚ	is	 the	 CM’s	 attitude	 on	 revenue,	 and	0 ൏ ߚ ൏ 1.	 By	 introducing	ߚ,	 the	multi‐objective	
capacity	portfolio	optimization	problem	in	Eq.	6	turns	into	single‐objective	problem.		

Unfortunately,	the	optimization	of	CM’s	capacity	portfolio	given	in	Eq.	6	is	NP	hard	in	nature.	
It	is	rather	time‐consuming	to	optimize	the	problem	when	the	numbers	of	decision	variables	and	
constraints	increase.	In	this	study,	we	develop	an	improved	AFSA	(named	AFSA_MU)	to	optimize	
the	CM’s	capacity	portfolio.		

The	AFSA	and	its	variants	are	widely	used	in	the	optimizations	in	the	OM	field	[28‐30].	The	
basic	principle	AFSA	relies	on	the	phenomenon	that	a	fish	can	discover	the	more	nutritious	area	
by	searching	or	 following	other	 fish,	 the	area	with	more	 fish	 is	 generally	most	nutritious.	The	
AFSA	imitates	the	fish	behaviours	such	as	preying,	swarming,	moving	and	following	with	 local	
search	of	an	artificial	fish	(AF)	for	reaching	the	global	optimum.	The	AF’s	behaviours	are	defined	
as	follows:	

	

Preying	behaviour.	An	AF	is	generated	with	ܻሺݕ௝, ݆ ൌ 1,… , ݊ሻ	being	its	current	position,	where	
	is	௝ݕ the	proportion	of	 investment	on	 the	 capacity	 ௝ܵ	and	ݕ௝	is	 the	decision	variable	 to	be	opti‐
mized.	The	AF	randomly	searches	its	neighbour’s	position	 ௩ܻ	in	its	vision.		

ݒܻ ൌ ܻ ൅ ݈ܽݑݏܸ݅ ∙ ሺሻ݀݊ܽݎ 	 (7)

where	݀݊ܽݎሺሻ	is	uniform	distributed	in	0	and	1,	ܸ݈݅ܽݑݏ	represents	the	AF’s	visual	distance.	The	
AF	 compares	 the	 value	 functions	 of	ܨሺܻሻ	and	ܨሺ ௩ܻሻ.	 If	ܨሺ ௩ܻሻ ൐ 	in	ሺܻሻܨ the	maximum	problem,	
then	the	AF	goes	forward	a	step	in	this	direction	and	arrives	at	the	position	 ௡ܻ௘௫௧,	which	is	given	
by		

ݐݔܻ݁݊ ൌ ܻ ൅ ሺሻ݀݊ܽݎ ∙ ݌݁ݐݏ ∙
ܻ െ ݒܻ
‖ܻ െ ‖ݒܻ

	 (8)

where	݌݁ݐݏ	is	the	step	length.	 If	ܨሺ ௩ܻሻ ൏ 	an	continues	AF	the	ሺܻሻ,ܨ inspecting	tour	in	 its	visual	
range,	which	is	described	by	Eq.	7.	
	

Swarming	behaviour.	The	AF	will	assemble	in	groups	naturally,	which	is	a	kind	of	living	habits.	
Let	 ௖ܻ 	be	the	center	position	and	 ௙ܰ	be	the	number	of	its	companions	in	the	current	neighbour‐
hood.	݊	is	 the	 total	 fish	 number.	∆	measures	 the	 crowdedness	 of	 the	 AF’s	 neighbourhood.	 If	

ሺܨ ௖ܻሻ ൐ 	and	ሺܻሻܨ
ே೑
௡
൏ ∆,	which	means	that	the	companion	center	has	more	food	and	is	not	very	

crowed,	the	AF	goes	forward	a	step	to	the	companion	center,	which	is	given	by		

ݐݔܻ݁݊ ൌ ܻ ൅ ሺሻ݀݊ܽݎ ∙ ݌݁ݐݏ ∙
ܻ െ ܻܿ
‖ܻ െ ܻ௖‖

	 (9)

Otherwise,	the	AF	executes	the	preying	step.	
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Following	or	moving	behaviour.	If	the	position	 ௩ܻ	is	better	than	ܻ	and	the	surrounding	of	 ௩ܻ	is	
not	crowded,	the	AF	goes	forward	a	step	to	the	position	 ௩ܻ,	which	is	given	in	Eq.	8.	If	the	AF	can‐
not	find	a	better	position,	it	continues	to	search	in	its	vision,	which	is	given	in	Eq.	7.		

The	 basic	 AFSA	 is	 an	 iterative	 algorithm,	 which	 gradually	 converges	 into	 global	 optimum.	
However,	the	AFSA	could	easily	fall	 into	the	local	optimum	when	the	݌݁ݐݏ	is	 fixed.	For	a	 larger	
value	of	݌݁ݐݏ,	the	AF	could	quickly	assemble	in	groups	in	the	first	iterations,	but	it	could	oscillate	
around	the	global	optimum.	However,	 for	a	smaller	value	of	݌݁ݐݏ,	 it	will	 take	a	 longer	time	for	
the	AF	to	converge	and	could	easily	fall	into	the	local	optimum.	To	improve	the	performance	of	
AFSA,	we	introduce	the	principle	of	uniform	mutation	to	adaptively	change	the	length	of	visual	
range	and	step.	Therefore,	the	improved	AFSA	is	called	AFSA_UM	in	this	study.	

Let	݇݁݅ݏ	݅ݏ݁݇) ൏ 	variation	the	If	process.	mutation	uniform	the	trig	to	threshold	the	be	(݌݁ݐݏ
between	the	current	and	the	previous	positions	is	less	than	݇݁݅ݏ,	then	keep	the	current	position	
and	 add	 a	uniform	 random	number	 on	 the	other	 fish.	 The	uniform	mutation	 allows	us	 to	use	
larger	values	of	visual	range	and	step	at	the	beginning	iterations	and	switch	to	the	small	values	
at	the	ending	iterations.	Therefore,	it	could	greatly	increase	the	convergent	speed	and	precision	
in	finding	the	global	optimum.		

To	adaptively	change	the	lengths	of	AF’s	visual	range	and	step,	we	first	calculate	three	kinds	
of	vision	ranges:	(1)	ܸ݅݃ݒܽ_݈ܽݑݏ	denotes	the	average	distances	between	the	AF	and	all	its	neigh‐
bour	 fish,	 	is	ݐݏܾ݁_݈ܽݑݏܸ݅	(2) the	distance	between	 the	AF	and	 the	best	neighbour	 fish,	 and	 (3)	
	use	could	AF	The	neighbour.	nearest	its	and	AF	the	between	distance	the	represents	ݐݏݎ݊_݈ܽݑݏܸ݅
	as	݃ݒܽ_݈ܽݑݏܸ݅ the	 visual	 range	 in	 moving	 and	 swarming	 steps,	 and	 use	ܸ݅ݐݏܾ݁_݈ܽݑݏ	and	
	as	ݐݏݎ݊_݈ܽݑݏܸ݅ the	 visual	 range	 in	 preying	 step.	 The	 adaptive	 step	 length	 could	 be	 given	 by	
݌݀ܽ_݌݁ݐݏ ൌ ߛ ∙ 		.1	and	0	between	constant	a	is	ߛ	where	,݈ܽݑݏ݅ݒ

The	procedure	of	AFSA_UM	to	optimize	the	CM’s	capacity	portfolio	is	described	below.	

Step	1:	Initialization.	Set	the	fish	number	(fishnum),	maximal	generation	(maxgen),	the	maximal	
try	number	(try_num),	randomly	generate	an	artificial	fish	swam	with	the	population	size	
fishnum	( ଵܻ, … , ௙ܻ௜௦௛௡௨௠).	

Step	2:	The	CM’s	capacity	portfolio	problem	is	served	as	the	value	function.		
Step	3:	Calculate	the	visual	ranges	(e.g.,	ܸ݅,݃ݒܽ_݈ܽݑݏ	,ݐݏܾ݁_݈ܽݑݏܸ݅	ݐݏݎ݊_݈ܽݑݏܸ݅)	and	the	adaptive	

step	(݌݀ܽ_݌݁ݐݏ).		
Step	4:	For	 ௝ܻ,	execute	the	swarming	and	following	behaviours	with	ܸ݅݃ݒܽ_݈ܽݑݏ,	and	execute	the	

preying	 behavior	with	ܸ݅ݐݏܾ݁_݈ܽݑݏ	and	ܸ݅ݐݏݎ݊_݈ܽݑݏ.	 If	 a	 better	 solution	 ௩ܻ	is	 found,	 re‐
place	 ௝ܻ	with	 ௩ܻ.		

Step	5:	Update	the	optimal	solution	on	the	bulletin	board.	If	the	optimal	solution	reach	the	con‐
vergent	precision,	then	terminate	the	iteration;	otherwise,	go	to	the	next	step.		

Step	6:	Uniform	 mutation.	 Calculate	 the	 variation	 between	 the	 current	 and	 previous	 optimal	
positions.	 If	 the	variation	 is	 less	 than	kesi	 (i.e.,	0.01),	 then	keep	the	better	 fish	and	add	
uniform	random	numbers	on	the	other	fish	with	worse	positions.		

Step	7:	Termination	 criteria.	gen	ൌ	gen	൅	1.	 If	 gen	>	maxgen,	 or	 the	 optimal	 solution	meet	 the	
convergent	precision,	then	terminate	the	iteration.		

Before	 using	 the	 AFSA_UM	 to	 solve	 the	 CM’s	 optimal	 capacity	 portfolio,	 we	 use	 the	
݉݅݊ ݂ሺݔ, ሻݕ ൌ ଶݔ ൅ ଶݕ െ 10ሺܿݔ2ݏ݋ ൅ 5.12	and	ሻݕ2ݏ݋ܿ ൑ ,ݔ ݕ ൑ 5.12	to	test	the	robustness	of	the	
AFSA_UM	in	avoiding	falling	into	the	local	optimum.	The	parameters	settings	are:	fishnum=100,	
step=0.1,	∆=0.5,	kesi=0.01,	0.5=ߛ.	The	convergent	precision	to	terminate	is	1.0e‐5.		

To	show	the	robustness	of	AFSA_UM,	we	test	the	performance	of	three	algorithms:	genetic	al‐
gorithm	(GA),	the	basic	AFSA,	and	the	AFSA_UM.	We	run	each	algorithm	on	the	testing	function	
for	20	times.	Table	2	gives	the	results.	Among	three	algorithms,	AFSA_UM	performs	the	best	in	
convergent	precision	and	speed.	 	
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Table	2	Precision	and	iterations	of	GA,	AFSA	and	AFSA_UM	on	the	testing	function	
	 Precision_best	 Precision	_worst	 Precision	_avg	 Iterations_avg	 Success	rate	
GA	 3.913e‐5	 9.16e‐4	 4.89e‐5	 97.5	 70.3%	
AFSA	 3.213e‐5	 8.16e‐4	 4.34e‐5	 91.3	 74%	
AFSA_UM	 2.53e‐11	 1.09e‐11	 6.73e‐11	 30.6	 94%	

4. Results and discussion 

4.1 Influences of δ on the retailers’ investment decisions 

From	Corollary	1	to	4,	we	have	shown	that	the	value	of	ߜ	determines	each	retailer’s	investment	
decision.	 Recall	 the	 thresholds	 of	ߜ	in	 Corollary	 1	 to	 4,	we	 could	 have	ߜଵ ൏ 0	and	ߜସ ൐ ଶߜ ൐ 0.	
However,	the	sign	of	ߜଷ	depends	on	the	values	of	ߙ	and	b.	Table	3	shows	each	retailer’s	 invest‐
ment	decision	under	different	values	of	ߜ.		

As	ሺߜଶ െ ‐in	the	investigate	we	CM,	the	invest	jointly	retailers	both	that	region	the	denotes	ଵሻߜ
fluences	of	ߙ	and	b	on	the	value	of	ሺߜଶ െ 	could	we	2,	and	1	Corollary	From	3.	Table	in	given	ଵሻߜ
obtain	that	ሺߜଶ െ 	and	behaviour	free‐riding	the	when	that,	means	It	b.	and	ߙ	with	decreases	ଵሻߜ
the	market	competition	are	high,	both	retailers	will	 lower	their	 intentions	to	 jointly	 invest	the	
CM.		

Table	3	Each	retailers’	investment	decisions	under	the	value	of	ߜ	
	

In	the	situation	when	ܽ ൐ ܾ/2	
Both	retailers	jointly	invest	the	CM	when	ߜଵ ൏ ߜ ൏ ଶߜ
Retailer	1	free	rides	and	Retailer	2	invests	the	CM	when ߜ ൏ ଷߜ ൏ 0
Retailer	1	invests	the	CM	and	Retailer	2	free	rides	when	0 ൏ ସߜ ൏ ߜ ൏ ଷߜ
Both	retailers	do	not	invest	the	CM	when	0 ൏ ଶߜ ൏ ߜ ൏ ସߜ and ଷߜ ൏ ߜ ൏ ଵߜ ൏ 0

In	the	situation	when	ܽ ൑ ܾ/2	
Retailer	1	free	rides,	Retailer	2	invests	the	CM	when ߜ ൐ maxሺߜଷ, ସሻߜ

4.2 Influence of β on the CM’s capacity portfolio optimization 

To	investigate	the	CM’s	attitude	on	revenue	(ߚ)	on	the	solution	of	capacity	portfolio,	we	use	the	
numerical	 studies	where	 the	AFSA	and	AFSA_UM	are	utilized.	Table	4	gives	 the	parameters	of	
five	types	of	capacity	with	different	combinations	of	revenue	and	risk.	

The	 parameters	 for	 the	 AFSA	 and	 AFSA_UM	 are:	 Visual	=	 2.5,	 step	=	 0.5,	 firshnum	=	 100,	
maxgen	=	100,	try_num	=	100,	∆	=	0.6,	kesi	=	0.01,	ߛ	=	0.6.	The	CM’s	attitude	factor	on	revenue,	ߚ	=	
{0.1,	0.2,	0.3,	0.4,	0.5}.	Both	algorithms	are	run	for	20	times,	and	ݕ௝	is	the	average	of	the	propor‐
tion	of	total	investment	on	the	capacity	 ௝ܵ.	Table	5	gives	the	numerical	results.	

Table	4	The	parameters	of	the	capacity	portfolio	to	be	optimized	
	 S1	 S2	 S3	 S4	 S5	
ri	 0.28	 0.23	 0.21	 0.05	 0.25	
ui	 0.025	 0.055	 0.015	 0.00	 0.026	

Table	5	The	results	of	CM’s	capacity	portfolio	optimization	by	AFSA	and	AFSA_UM	
	 	 y1	 y2	 y3	 y4	 y5	 R	 U	 F	

ߚ ൌ 0.1	
AFSA	 0.401	 0.003	 0.437	 0.053	 0.106	 0.2339	 0.0100	 0.0324	

AFSA_UM	 0.327	 0.18	 0.493	 0	 0	 0.2365	 0.0099	 0.0326	

ߚ ൌ 0.2	
AFSA	 0.397	 0.043	 0.3	 0.007	 0.253	 0.2477	 0.0099	 0.0575	

AFSA_UM	 0.365	 0.229	 0.126	 0	 0.28	 0.2450	 0.0126	 0.0591	

ߚ ൌ 0.1	
AFSA	 0.539	 0.056	 0.206	 0.009	 0.19	 0.2550	 0.0135	 0.0859	

AFSA_UM	 0.505	 0.18	 0	 0	 0.315	 0.2616	 0.0126	 0.0873	

ߚ ൌ 0.4	
AFSA	 0.639	 0.056	 0.206	 0	 0.099	 0.2598	 0.0160	 0.1135	

AFSA_UM	 0.627	 0	 0.183	 0	 0.19	 0.2615	 0.0157	 0.1140	

ߚ ൌ 0.5	
AFSA	 0.754	 0	 0.006	 0	 0.24	 0.2724	 0.0189	 0.1456	

AFSA_UM	 0.773	 0	 0	 0	 0.227	 0.2800	 0.0210	 0.1525	
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From	Table	5,	we	have	two	findings:	

 The	AFSA_UM	always	outperforms	the	AFSA	in	two	folds:	(i)	it	provides	a	higher	total	rev‐
enue	while	lowering	the	maximal	loss,	and	(ii)	it	provides	higher	value	of	objective	func‐
tion	than	the	AFSA.		

 The	CM	prefers	 to	 increase	 the	 proportion	 of	Sଵ	when	β	increases.	 It	means	 that	 the	CM	
tends	 to	 increase	 the	 installment	 of	 the	 capacity	with	 the	 highest	 revenue	when	 he	 in‐
crease	his	attitude	on	the	revenue.		

4.3 Managerial findings of the study 

In	this	section,	we	summarize	the	managerial	findings	of	the	study.		

 From	Table	3,	we	find	that	the	retailer	with	obvious	cost	advantage	over	her	competitor	
will	 invest	the	CM,	because	(i)	she	could	increase	her	profit	by	enjoying	a	 lower	produc‐
tion	cost,	and	(ii)	she	could	dominate	the	market	share	by	providing	a	lower	price	to	the	
customers,	thus	deterring	the	competitor.	Her	competitor,	who	is	disadvantageous	in	cost,	
will	choose	to	free	ride.	Because,	the	competitive	inferiority	in	production	cost	is	so	obvi‐
ous	 that	 she	gives	up	 investing	 the	CM.	The	competitor	benefits	 from	 free	 riding	 in	 two	
folds:	 (i)	 she	 could	 enjoy	 a	 lower	 production	 cost,	 and	 (ii)	 order	 more	 products	 when	
ߙ ൐ ܾ/2.	However,	the	competitor’s	profit	is	not	surely	to	increase.		

 In	the	situation	when	the	absolute	value	of	ߜ	(i.e.,	|ߜ|)	is	 low	(see	Table	3),	both	retailers	
will	jointly	invest	the	CM.	The	reason	is	that,	when	the	cost	advantage	(or	disadvantage)	is	
not	obvious,	the	retailer	who	does	not	invest	the	CM	will	have	a	lower	profit	and	a	lower	
market	share,	and	hence,	be	in	a	state	of	competitive	inferiority.	However,	both	retailers’	
intentions	of	jointly	investment	will	decrease	in	ߙ	and	ܾ.	The	reason	is	that,	high	substitut‐
able	products	and	high	spillover	effect	will	 increase	both	retailers’	 intention	 to	 free	ride	
when	the	difference	of	production	costs	is	not	obvious.		

 In	the	situation	when	|ߜ|	is	 large,	the	retailer	with	obviously	cost	advantageous	will	con‐
tinue	to	 invest	the	CM,	because	she	could	dominate	the	market	with	even	lower	produc‐
tion	cost	and	her	profit	will	increase	by	investment.	However,	the	retailer	with	obviously	
cost	disadvantage	will	free	ride,	because	the	difference	of	production	costs	is	so	high	that	
she	will	be	in	competition	inferiority	even	she	provides	the	investment.		

 In	the	situation	when	|ߜ|	is	medium,	both	retailers	will	not	invest	the	CM.	The	reasons	are	
in	 two	 folds:	 (i)	 if	 the	 retailer	with	 cost	 advantage	 invests	 the	 CM,	 then	 the	 competitor	
could	benefit	more	through	free	riding,	such	as	lowering	the	retailing	price,	increasing	the	
profit	and	market	share.	(ii)	Oppositely,	if	the	retailer	with	cost	disadvantage	invests	the	
CM,	then	her	competitor	could	further	lower	the	production	cost,	lower	the	retailing	price,	
increase	the	profit	and	dominate	the	market.	Therefore,	both	retailers	will	choose	not	to	
invest	the	CM	as	their	investment	decisions.		

 The	CM	always	benefits	as	long	as	one	retailer	provides	the	investment.	The	reasons	are	in	
two	folds:	(i)	he	will	lower	the	wholesale	prices	for	both	retailers	to	incentivize	the	retail‐
ers	to	order	more	products,	thus	increasing	the	production	quantity;	and	(ii)	he	could	in‐
crease	the	marginal	profit	of	wholesaling	the	product,	and	hence,	increase	the	total	profit.	
The	numerical	study	shows	that	the	CM	prefers	to	install	more	capacity	with	the	highest	
revenue	 in	 his	 capacity	 portfolio	when	 his	 attitude	 on	 the	 revenue	 increases.	 AFSA_UM	
outperforms	the	AFSA	in	optimizing	the	CM’s	capacity	portfolio	problem	in	two	folds:	(i)	it	
converges	with	higher	speed	and	precision,	and	(ii)	it	provides	higher	revenue	and	lower	
risk,	and	higher	value	of	objective	function	than	the	AFSA.	Because	the	AFSA_UM	has	the	
ability	to	adaptively	change	the	AF’s	searching	step	by	introducing	the	uniform	mutation.	

5. Conclusion 

In	 this	 study,	 the	operational	decisions	of	a	 supply	chain	with	 two	competitive	 retailers	and	a	
shared	 contract	manufacturer	 (CM)	was	 firstly	 examined	 in	 this	 study.	 Then	 the	 paths	 of	 the	
retailers’	investment	strategies	were	investigated	in	detail.	The	CM’s	capacity	portfolio	problem	
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was model as a classic investment portfolio problem which was solved by the artificial fish 
swarm algorithm modified by uniform mutation (AFSA_UM). The following conclusions were 
obtained in this study: 

• For the CM, he always benefits from the retailers’ investment, because both his marginal 
profit and total profit will increase. The CM will install a higher proportion of capacity with 
higher revenue when he emphasizes more on the revenue. The CM’s capacity portfolio 
problem is optimized by the AFSA_UM which introduces the principle of uniform mutation 
to boost the convergent speed and precision. The numerical results show that the AF-
SA_UM is much more robust than the basic AFSA, and it could provide the CM a better ca-
pacity portfolio with higher revenue, lower maximal risk, and higher value of objective 
function.  

• For the retailers, their investment decisions are significantly influenced by the absolute 
difference of production costs (i.e., |𝛿𝛿|). Specifically, (i) both retailers jointly invest the CM 
when the value of |𝛿𝛿| is low. The retailers will lower their intentions to jointly invest when 
the free riding behaviour and the substitutability of the products are high. (ii) No retailer 
would invest the CM when the value of |𝛿𝛿| is medium. (iii) Only the retailer with obvious 
cost advantage will invest the CM when the value of |𝛿𝛿| is high. 

  

Three research directions can follow from this study. First, no market uncertainty is consid-
ered in this study. It would be interesting to investigate how the downside risk of demand will 
influence the competitive retailers’ investment decisions. Second, the information asymmetry 
phenomenon is not considered yet in this study. In the industrial practice, no retailer could have 
the compete knowledge of her competitors. However, the introduction of this phenomenon will 
greatly complicate the mathematic model and the procedure of analyses. Third, the optimization 
process of CM’s capacity portfolio is independent of the retailers’ investment decisions in this 
study. However, the value function of optimizing the CM’s capacity portfolio will be complicated 
when the retailers’ decisions are incorporated.  
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