

271

	

Advances	in	Production	Engineering	&	Management	 ISSN	1854‐6250	

Volume	14	|	Number	3	|	September	2019	|	pp	271–283	 Journal	home:	apem‐journal.org	

https://doi.org/10.14743/apem2019.3.327 Original	scientific	paper	

Dynamic scheduling in the engineer‐to‐order (ETO) assembly
process by the combined immune algorithm and simulated
annealing method

Jiang, C.a,*, Xi, J.T.a
aSchool of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China

A B S T R A C T	 A R T I C L E I N F O	

With	 the	 increasing	demand	 for	 customization,	 the	 engineer‐to‐order	 (ETO)	
production	strategy	plays	an	increasingly	important	role	in	today’s	manufac‐
turing	 industry.	 The	 dynamic	 scheduling	 problem	 in	 ETO	 assembly	 process	
was	 investigated.	 We	 developed	 the	 mathematical	 model	 to	 represent	 the	
problem.	In	order	to	reduce	rescheduling	frequency,	we	introduced	the	con‐
cept	of	starting	time	deviation	and	improved	the	rolling	horizon	driven	strat‐
egy.	 We	 proposed	 the	 hybrid	 algorithm	 combining	 immune	 algorithm	 (IA)	
and	simulated	annealing	(SA)	with	the	minimization	of	the	rescheduling	cost	
as	the	objective.	The	IA	was	designed	as	the	global	search	process	and	the	SA	
was	 introduced	 to	 improve	 the	 local	 searching	 ability.	 The	 scenario‐based	
approach	was	used	to	model	the	disruptions	affecting	the	tasks	to	be	executed.	
Performance	of	the	rolling	horizon	driven	strategy	and	the	hybrid	algorithm	
were	evaluated	through	simulations,	the	experiment	analysis	showed	the	best	
parameters	of	rolling	horizon	methods	and	demonstrated	the	feasibility	of	the	
hybrid	algorithm.	The	hybrid	algorithm	was	tested	on	different	scale	bench‐
mark	 instances	 and	 the	 case	 that	 collected	 from	 a	 steam	 turbine	 assembly	
shop.	The	quality	of	solution	in	terms	of	cost	obtained	by	the	hybrid	algorithm	
was	found	superior	to	the	other	three	algorithms	proposed	in	the	literature.	

©	2019	CPE,	University	of	Maribor.	All	rights	reserved.	

 Keywords:	
Engineer‐to‐order	(ETO);	
Assembly	process;	
Dynamic	scheduling;	
Rescheduling;	
Rolling	horizon;	
Immune	algorithm;	
Simulated	annealing		

*Corresponding	author:		
sjjzxjc@163.com	
(Jiang,	C.)	

Article	history:		
Received	16	April	2019	
Revised	14	September	2019	
Accepted	16	September	2019	

1. Introduction

The	today’s	manufacturing	industry	is	characterized	by	increasingly	complex	customized	prod‐
uct,	 many	 companies	 have	 changed	 their	 business	 models	 from	make‐to‐stock	 to	 X‐to‐order,	
where	 X	 usually	 stands	 for	 configure	 or	 engineer.	 Configure‐to‐order	 (CTO)	 is	 a	modular	 ap‐
proach,	assembles	orders	from	existing	building	blocks	that	can	be	delivered	from	stock	and	is	
hardly	 any	engineering	 involved.	The	engineer‐to‐order	 (ETO)	 strategy	 is	used	when	 complex	
structures	are	needed	to	be	built.	The	finished	product	and	many	components	have	never	been	
built	 before	 and	 are	 impossible	 to	 be	 handled	with	 standard	 variations.	 The	 ETO	 production	
strategy	has	become	a	trend	[1,2].	During	the	ETO	process,	the	most	important	phase	is	assem‐
bly	process	[3].	Assembly	process	accounts	for	almost	50	%	of	the	total	production	time,	20	%	of	
the	total	production	cost	and	30	%	to	50	%	of	the	labour	cost	[4].	The	customer	of	ETO	products	
are	very	strict	with	delivery	deadline	and	late	delivery	will	be	punished.	In	ETO	companies,	sev‐
eral	products	are	assembled	in	parallel	[5]	and	the	layout	of	typical	ETO	product	assembly	shop	
is	shown	in	Fig.	1.	Some	workers	formed	the	assembly	group	to	execute	the	assembly	task	and	
the	task	duration	depends	on	the	number	and	skill	level	of	workers	[6].	The	typical	working	sit‐
uation	of	ETO	assembly	is	shown	in	Fig.	2.	

Jiang, Xi

272 Advances in Production Engineering & Management 14(3) 2019

	

Fig.	1	The	layout	of	typical	ETO	product	assembly	shop	 Fig.	2	Typical	working	situation	of	ETO	assembly		
	
There	are	many	unexpected	events	occur	frequently	during	the	ETO	assembly	process,	such	

as	the	 late	delivery	of	necessary	components,	rework	due	to	quality	problems,	etc	[7,8].	There	
events	usually	exceed	the	task	duration	and	cause	the	deviations	from	the	initial	schedule.	Due	
to	the	characteristic	of	manual	assembly	and	inherent	flexibilities	in	the	schedule,	the	small	de‐
viations	 can	be	absorbed	by	 the	 initial	 schedule	 (The	 concept	of	 'small'	 depends	on	 the	ques‐
tion).	If	the	deviation	exceeds	the	threshold,	the	initial	schedule	became	infeasible	and	resched‐
uling	 is	 needed.	 Since	 such	 unexpected	 events	 usually	 occur	 in	 the	 actual	 production,	 it	 is	 of	
practical	significance	to	study	the	rescheduling	problem	in	ETO	assembly	process.	

The	terms	'rescheduling'	and	'dynamic	scheduling'	are	often	used	interchangeably	in	the	lit‐
erature	[9].	Vieira	et	al.	[10]	have	classified	the	dynamic	scheduling	strategies	into	three	types:	
(1)	reactive	scheduling	which	is	to	repair	the	schedule	[11];	(2)	proactive	scheduling	which	is	to	
create	a	schedule	robust	with	unexpected	events	[12];	(3)	study	how	rescheduling	strategy	af‐
fect	 the	 performance	 of	manufacturing	 systems.	 The	 dynamic	 scheduling	 problem	 in	 ETO	 as‐
sembly	 process	 is	 treated	 as	 reactive	 scheduling	 in	 multi‐mode	 resource‐constrained	 multi‐
project	scheduling	problem	(MRCMPSP).	For	the	review	of	reactive	scheduling	in	project	sched‐
uling	(PSP),	we	refer	to	Herroelen	and	Leus	[12,13].	In	the	field	of	reactive	scheduling	in	single‐
mode	resource‐constrained	single‐project	scheduling	problem(RCPSP),	Van	de	Vonder	[14]	and	
Van	de	Vonder	[15]	et	al.	have	dealt	with	the	problem	of	task	duration	variability.	The	literature	
on	reactive	scheduling	in	the	multi‐mode	resource‐constrained	single‐project	scheduling	prob‐
lem(MRCPSP)	is	scare,	Zhu	proposed	a	branch‐and‐cut	and	constrained	programming	procedure	
for	a	general	class	of	reactive	problems	[16],	Deblaere	proposed	and	evaluated	a	number	of	ded‐
icated	exact	methods	and	tabu	search	to	solve	the	reactive	scheduling	problem	[11],	Chakrabort‐
ty	formulated	the	discrete	time	based	models	and	proposed	the	reactive	scheduling	for	a	single	
or	a	set	of	disruptions	[17].	To	the	best	of	our	knowledge,	the	literature	on	reactive	scheduling	in	
the	multi‐mode	resource‐constrained	multi‐project	scheduling	problem	(MRCMPSP)	is	none.		

The	 rescheduling	 problem	 is	 different	 from	 the	 initial	 planning	 problem	 because	 the	 re‐
scheduling	decision	needed	 to	be	made	 in	a	 timely	manner.	As	 the	exact	methods	can	only	be	
used	 to	 solve	 small	 projects	which	 have	 less	 than	 20	 tasks	 [18],	 the	metaheuristics	 are	more	
suitable	[7,19].	Considering	the	convergence	ability	of	the	IA	and	the	exploitation	ability	of	SA,	
we	proposed	a	hybrid	algorithm	which	combined	IA	and	SA	 to	solve	 this	problem.	The	rolling	
horizon	rescheduling	strategy	is	proposed	to	improve	the	computational	speed	[20].	The	rest	of	
this	paper	will	be	organized	as	the	follows:	Section	2	provides	the	mathematical	model	for	the	
problem	and	section	3	describes	the	rolling	horizon	rescheduling	strategy	and	the	hybrid	algo‐
rithm.	In	section	4,	the	hybrid	algorithm	and	three	other	metaheuristic	algorithms	proposed	in	
the	literature	are	applied	to	solve	benchmarks	selected	from	literature	and	the	industrial	case.	
Conclusions	and	future	directions	are	given	in	section	5.	

2. Problem definition

The	decision	problem	concerns	with	rescheduling	tasks	and	their	corresponding	worker	alloca‐
tion	in	the	multi‐project	environment.	The	objective	is	to	minimize	the	rescheduling	cost,	which	
is	the	sum	of	the	task	starting	time	deviation	cost,	mode	switching	cost	and	tardiness	cost.	The	

Dynamic scheduling in the engineer‐to‐order (ETO) assembly process by the combined immune algorithm and simulated …

Advances in Production Engineering & Management 14(3) 2019 273

deviation	of	task	starting	time	will	incur	the	cost	of	additional	storage	and	crane	for	the	required	
components.	The	mode	switching	cost	is	often	regarded	as	‘‘administrative’’	cost	[11].	The	tardi‐
ness	cost	is	the	penalties	associated	with	late	project	completion	[21].	In	this	study,	we	consider	
the	problem	subject	to	the	following	assumptions:	

(1)	 Manual	assembly	processes	are	assumed	to	be	carried	out	by	a	worker	team.	A	mode	repre‐
sents	a	task‐worker	team	with	a	constant	duration.	

(2)	 During	the	execution	of	each	task,	the	assigned	mode	cannot	be	changed,	i.e.	preemption	is	
not	allowed	during	the	execution	of	each	task.	

(3)	 The	precedence	relationships	of	each	project	force	each	task	to	be	scheduled	after	all	prece‐
dence	tasks,	the	projects	are	independent	of	each	other.	

(4)	 Each	worker	cannot	be	allocated	to	more	than	one	task	at	the	same	time.	
(5)	 The	maximum	number	of	workers	executing	task	is	constrained	by	the	work‐space.	
(6)	 The	set‐up	time	for	each	task	is	included	in	the	task	duration,	and	the	transportation	time	of	

workers	between	the	tasks	is	negligible.	
(7)	 The	rescheduled	task	starting	time	cannot	be	earlier	than	the	task	starting	times	from	the	

initial	schedule.	

The	notation	used	in	this	section	can	be	summarized	as	follows:	

Indices:	

	ܫ Set	of	projects	
	௜ܬ Set	of	tasks	for	project	݅ ∈ ܫ
ܳ	 Set	 of	maximum	 number	 of	 tasks	 for	 each	 project	 that	 can	 be	 executed	

concurrently	due	to	floor	space	constraint	
	௜௝ܯ Set	of	task	execution	modes	in	task	݆ ∈ ௜ܬ ,	which	correspond	to	the	worker	

team	
	ܭ Set	of	hierarchical	levels
ܶ	 Set	of	time	periods
ܹ	 Set	of	workers	
Parameters	
	௜ݎ release	date	of	project	݅ ∈ ,ܫ i.e.	the	earliest	time	that	project	݅ ∈ start	can	ܫ
݀௜	 due	date	of	project	݅ ∈ ܫ
	௜ݍ the	maximum	 number	 of	 tasks	 in	 project	݅ that	 can	 be	 executed	 concur‐

rently	due	to	floor	space	constraint	
	ሺ݆ሻ݀݁ݎ݌ the	predecessor	set	of	task ݆ ∈ ሺ݆ሻ݀݁ݎ݌	.i.e	௜,ܬ ൌ ሼ݆ᇱ|݆ᇱ ≺ ݆ሽ	
	௜௝௠௔௫ݓ maximum	number	of	workers	executing task	݆ ∈ ௜ܬ
	௜௝௠௜௡ݓ minimum	number	of	workers	executing task	݆ ∈ ௜ܬ
	௞ݓ number	of	type‐݇ workers
	௠௞ݖ number	of	type‐݇ workers	in	mode	݉ ∈ ௜௝ܯ

݀௜௝௠	 duration	of	task	݆ ∈ ௜ܬ in	mode	݉ ∈ ௜௝ܯ

݊௜௝	 unit	cost	of	starting	time	deviation	of	task	݆ ∈ ௜ܬ
ܿ௜௝௠೔ೕ

∗ 	 cost	incurred	by	switching	the	mode	from	݉௜௝ to	݉௜௝
∗

	௜݌ unit	cost	of	violating	the	due	date	of	project	݅
	௜௝ݏ start	time	of	task	݆ ∈ ௜ܬ from	the	initial	schedule
௜௝ݎݑ݀

∗ 	 processing	time	of	rescheduled	task	݆ ∈ ௜ܬ
௜݂௝
∗ 	 end	time	of	rescheduled	task	݆ ∈ ௜ܬ

Decision	variables:	

௜௝ݏ
∗ 	 start	time	of	task	݆ ∈ ௜ܬ after	rescheduling

௜௝௧ݔ
∗ ൌ ൜

1, if	rescheduled task	݆	is	performed at time ݐ ∈ ሺ0, ܶሿ 		
0, otherwise					 																										 		

	

௜௝௠ݕ
∗ ൌ ൜

1, if	rescheduled	task	݆	is	executed in mode ݉ ∈ ௜௝ܯ

0, otherwise				 																										
	

Jiang, Xi

274 Advances in Production Engineering & Management 14(3) 2019

Under	the	assumptions	and	notations,	the	mathematical	model	is	defined	as	follows:	

Objective	function:	

min 	 ܥ ൌ෍෍݊௜௝ ൉ ሺݏ௜௝
∗ െ ௜௝ሻݏ

௃

௝ୀଵ

ூ

௜ୀଵ

൅෍෍ܿ௜௝௠೔ೕ
∗

௃

௝ୀଵ

ூ

௜ୀଵ

൅෍݌௜ ൉ ,ሺ0ݔܽ݉ ௜݂
∗ െ ݀௜ሻ

ூ

௜ୀଵ

	 (1)

Constraint	conditions:		

௜௝ݏ
∗ ൒ ௜ݎ ∀݅ ∈ ,ܫ ݆ ∈ 	௜ܬ (2)

௜௝௠௜௡ݓ ൑ ෍ݕ௜௝௠
∗ ൉ ௠௞ݖ

௄

௞ୀଵ

൑ ௜௝௠௔௫ݓ ∀݅ ∈ ,ܫ ݆ ∈ ݉,௜ܬ ∈ 	௜௝ܯ (3)

෍෍ ෍ ௜௝௧ݔ
∗ ൉ ௜௝௠ݕ

∗ ൉ ௠௞ݖ ൑ ௞ݓ

ெ೔ೕ

௠ୀଵ

௃

௝ୀଵ

ூ

௜ୀଵ

ݐ∀ ∈ ሺ0, ܶሿ, ∀݇ ∈ 	ܭ (4)

௜௝ᇲݏ
∗ ൅ ෍ ௜௝ᇲ௠ݕ

∗ ൉ ݀௜௝ᇲ௠

ெ೔ೕ

௠ୀଵ

൑ ௜௝ݏ
∗ ∀݅ ∈ ,ܫ ݆ ∈ ,௜ܬ ݆ᇱ ∈ 	ሺ݆ሻ݀݁ݎ݌ (5)

෍ݔ௜௝௧
∗

௃

௝ୀଵ

൑ ௜ݍ ∀݅ ∈ ,ܫ ݐ∀ ∈ ሺ0, ܶሿ	 (6)

෍ ௜௝௠ݕ
∗

ெ೔ೕ

௠ୀଵ

ൌ 1 ∀݅ ∈ ,ܫ ݆ ∈ 	௜ܬ (7)

௜௝ݎݑ݀
∗ ൌ ෍ ௜௝௠ݕ

∗ ൉ ݀௜௝௠

ெ೔ೕ

௠ୀଵ

∀݅ ∈ ,ܫ ݆ ∈ ݉,௜ܬ ∈ 	௜௝ܯ (8)

௜݂௝
∗ ൌ ௜௝ݏ

∗ ൅ ௜௝ݎݑ݀
∗ ∀݅ ∈ ,ܫ ݆ ∈ 	௜ܬ (9)

௜ܵ௝
∗ ൒ ௜ܵ௝ ∀݅ ∈ ,ܫ ݆ ∈ ௜ܬ (10)

The	objective	function	in	Eq.	1	is	to	minimize	the	total	rescheduling	cost	ܥ.	Eq.	2	ensures	that	
the	rescheduled	start	 time	of	each	 task	 for	each	project	should	not	be	earlier	 than	 the	release	
date	of	project.	Eq.	3	implies	the	number	of	workers	assigned	to	each	task	must	be	within	certain	
limits	 due	 to	 the	work	 space	 constraint.	 Eq.	 4	 implies	 that	 at	 any	 time,	 the	 number	 of	 type‐݇	
workers	assigned	to	the	tasks	should	be	lower	than	or	equal	to	the	total	number	of	type‐݇	work‐
ers.	Eq.	5	ensures	that	the	precedence	relationships	between	tasks	of	the	same	project	are	not	
violated,	the	starting	time	of	task	should	not	be	earlier	than	the	finishing	time	of	its	predecessor	
set	of	tasks.	Eq.	6	implies	that	number	of	tasks	that	can	be	executed	concurrently	of	each	project	
should	be	limited	due	to	floor	space	constraint.	Eq.	7	ensures	that	each	task	is	being	performed	
only	 in	one	mode	(i.e.	 cannot	change	or	 interrupt	 the	execution	mode).	Eq.	8	denotes	 that	 the	
processing	time	of	task	equals	to	the	processing	time	of	assigned	execution	mode	for	that	task.	
Eq.	 9	 implies	 that	 the	 end	 time	of	 task	 equals	 to	 the	 start	 time	plus	 the	processing	 time,	 that	
means,	the	task	is	non‐preemptive.	Eq.	10	ensures	that	the	rescheduled	task	starting	time	should	
be	at	least	greater	or	equal	to	the	task	starting	times	from	the	initial	schedule.	

3. Materials and methods

3.1 Rolling horizon rescheduling strategy

The	rolling	horizon	strategy	is	very	suitable	for	solving	large‐scale	scheduling	problem,	because	
it	can	optimize	the	system	in	a	limited	time	horizon	instead	of	globally	optimizing	the	system	in	

Dynamic scheduling in the engineer‐to‐order (ETO) assembly process by the combined immune algorithm and simulated …

Advances in Production Engineering & Management 14(3) 2019 275

order	to	reduce	the	computational	complexity.	It	can	divide	the	original	scheduling	horizon	into	
some	periods,	at	each	decision	point,	scheduling	task	set	should	be	selected	and	local	schedule	
should	 be	 made.	 As	 time	 horizon	 rolls	 forward	 sequentially,	 each	 local	 scheduling	 problem	
would	be	solved	until	the	global	schedule	is	gotten.	The	rescheduling	strategy	is	shown	in	Fig.	3.	
The	 task	 starting	 time	 deviation	 is	 detected	 and	 judged	 by	 the	 rescheduling	 mechanism	 for	
whether	 to	 reschedule	or	not.	 If	 rescheduling	 is	 needed,	 the	window	 is	 selected	based	on	 the	
window	mechanism.	The	hybrid	algorithm	 is	performed	within	 the	window.	The	rescheduling	
mechanism	and	window	mechanism	are	 the	 two	key	elements	of	 rolling	horizon	 rescheduling	
strategy.	
	

Initial plan

Initial starting time of
task 1 in project 1 and the
corresponding worker

allocation

Initial starting time of
task 2 in project 1 and the
corresponding worker

allocation

Initial starting time of
task Ji in project I and the
corresponding worker

allocation

∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙

Actual plan
Actual starting time of

task 1 in project 1 and the
corresponding worker

allocation

Actual starting time of
task 2 in project 1 and the
corresponding worker

allocation

Actual starting time of
task Ji in project I and the
corresponding worker

allocation

∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙

Disruption

Equipment failure
Late delivery of
components

Under‐estimate or
over‐estimate of task

time
∙∙∙∙∙∙∙∙∙∙∙∙

Rescheduling mechanism

Starting time deviation
exceed tolerance?

Starting time
deviation
|S,ij ‐Sij|

Deviation
time

tolerance

Time‐based rolling window

task n in
project m

task n+1 in
project m

task Ji in
project I

∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙

Select tasks

Selecting
rule

Window
size

Rescheduling
problem

Rescheduling
algorithm

Rescheduling solution
(Reactive scheduling)

Yes，then
need to

reschedule

	
Fig.	3	Rolling	rescheduling	strategy	

	

In	the	actual	production,	the	deviation	of	task	processing	time	is	inevitable.	This	will	lead	to	
deviation	between	actual	starting	time	and	initial	starting	time	of	successor	task,	then	the	initial	
schedule	may	be	infeasible	and	the	rescheduling	is	required	[21].	If	each	deviation	is	adjusted,	it	
will	 lead	 to	 frequent	rescheduling	and	reduce	 the	efficiency	of	production.	We	established	 the	
buffer	mechanism	and	introduced	the	concept	of	starting	time	deviation	tolerance,	it	can	filtrate	
the	small	deviation	and	consider	the	accumulation	caused	by	a	large	number	of	small	deviations.	
The	concept	of	task	starting	time	deviation	is	proposed,	and	given	by:		

௜ݒ݁݀ ൌ ௜௝ݏ
ᇱ െ ,௜௝ݏ ݆ ൌ ௜௝ݏ|௜௝ݏሺ௝ሻmaxሼ݃ݎܽ

ᇱ ൑ ܶ, ∀݅, ∀݆ሽ	 (11)

ߜ ൌ ݊݋݅ݐܽ݅ݒ݁݀ ൌ ௜ሻݒሺ݀݁ݔܽ݉ , ∀݅	 (12)

Each	task	in	multi	projects	may	have	deviation,	then	we	select	the	current	maximum	devia‐
tion	ߜ.	We	 determine	 the	 task	 starting	 time	 deviation	 tolerance	ߜ௠௔௫.	 During	 the	 process,	ߜ	is	
compared	with	ߜ௠௔௫.	 Once	δ	exceeds	ߜ௠௔௫,	 the	 rescheduling	 is	 needed.	 The	 number	 of	ߜ௠௔௫	is	
very	important,	 if	 it	 is	too	large,	 it	can't	respond	to	the	disruptions	quickly;	 if	 it	 is	too	small,	 it	
will	incur	frequent	rescheduling.		

1 2 3 ∙∙∙∙∙∙∙∙∙ n

∙∙∙∙∙∙∙∙∙ n

∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙

Time periods

First Window

∙∙∙

Implementation

Second Window

Third Window

	
											Fig.	4	Time‐based	rolling	window	

Jiang, Xi

276 Advances in Production Engineering & Management 14(3) 2019

We	select	the	rescheduling	window	mechanism	based	on	time.	We	divide	the	original	sched‐
uling	horizon	ሾ0, 	as	length,	equal	with	periods	݊	into	ሿܭ in	Fig.	4	shows.	The	window	size	has	a	
great	impact	on	computational	efficiency.	If	the	window	is	too	large,	 it	 is	difficult	to	obtain	the	
optimal	solution	as	the	computational	complexity	is	large;	If	it	is	too	small,	the	considered	global	
information	is	less	and	the	global	optimal	performance	may	not	be	satisfied.		

3.2 Solution procedure

The	immune	algorithm	(IA)	is	a	population‐based	optimization	algorithm	introduced	by	De	Cas‐
tro	 [22].	 It	 has	 the	 merits	 of	 easy	 implementation,	 fast	 convergence.	 However,	 IA	 is	 easily	
trapped	 into	 local	 optima.	 Simulated	 annealing	 (SA)	 algorithm	 is	 a	 local	 search	metaheuristic	
proposed	by	Metropolis,	Nicholas	[23].	The	convergence	properties	and	hill‐climbing	moves	to	
escape	local	optima	have	made	it	become	the	popular	local	search	algorithm	[24].	In	this	study,	
we	proposed	a	hybrid	algorithm	combining	 the	merits	of	 IA	and	SA	algorithm	 for	 solving	 this	
problem.	The	proposed	algorithm	consists	of	two	phases,	the	first	phase	is	IA	which	is	used	for	
the	 global	 searching	 process	 and	 the	 solution	 is	 treated	 as	 the	 initial	 solution	 in	 the	 second	
phase.	The	second	phase	 is	SA,	which	 is	 employed	 for	 the	 local	 searching	process.	The	 frame‐
work	of	the	proposed	algorithm	is	shown	in	Fig.	5.	

Initialization

Step	1:	Combining	all	the	projects	and	relabel	the	tasks	

We	combined	all	the	projects	into	a	combined	precedence	graph	and	re‐numbered	the	tasks.	If	
the	first	project	has	݊	tasks,	then	the	first	task	of	second	project	is	re‐numbered	as	݊ ൅ 1,	and	so	
on.	

Step	2:	Encoding	and	decoding	

We	adopted	the	chromosome	encoding	method.	The	length	of	chromosome	is	twice	the	number	
of	total	tasks.	The	representation	is	comprised	of	two	vectors,	the	first	is	the	precedence	feasible	
task	list	(TL)	for	scheduling	process,	while	the	second	vector	is	the	mode	assignment	for	tasks	
execution.	The	TL	is	a	precedence	feasible	permutation	of	tasks,	in	which	each	task	must	occur	
after	all	 its	predecessors	and	before	all	 its	 successors.	The	second	vector	 is	a	 list	of	 execution	
modes	for	all	tasks,	the	݇‐th	element	of	this	list	defines	the	execution	mode	of	task	݇.	Each	chro‐
mosomal	 representation	 determines	 the	 sequence	 of	 tasks	 for	 each	 project	 and	 the	mode	 for	
each	 task.	We	 applied	 the	 parallel	 schedule	 generation	 scheme	 (parallel	 SGS)	 to	 generate	 the	
schedule	related	to	 individuals,	which	consist	of	precedence	feasible	TL	with	the	mode	assign‐
ment.	

Immune algorithm phase

Immune	algorithm	 (IA)	 is	 inspired	by	 the	biological	 immune	 system	defending	 the	body	 from	
infection	and	disease.	The	immune	system	firstly	recognizes	toxins	or	bacteria	as	antigens,	then	
generate	a	set	of	antibodies	to	eliminate	the	antigens.	The	antibodies	which	are	better	at	elimi‐
nating	the	antigens	will	have	more	variants	in	the	next	generation.	Each	antibody	is	assigned	a	
value	called	affinity	showing	the	ability	to	eliminate	antigens.	The	antigen,	affinity	and	antibody	
in	the	IA	are	equivalent	to	the	problem	to	be	solved,	objective	function	and	feasible	solution.	

Step	1:	Identify	antigen	and	generate	initial	population	

The	optimization	problem	needs	to	be	transformed	to	the	form	that	the	algorithms	can	identify	
and	evolve.	Each	antibody	 is	designed	 to	 represent	a	 feasible	 solution	of	 the	problem	and	 the	
corresponding	problem	 is	 the	antigen.	Then,	generate	 the	 initial	population	randomly	without	
any	experience.		

Step	2:	Evaluate	the	affinity	value	of	antibodies	

The	affinity	value	is	used	as	the	performance	evaluation	of	each	antibody.	The	antibodies	with	
higher	affinity	value	are	better	at	eliminating	antigens.	Eq.13	is	used	to	define	the	affinity	value.	

ݕݐ݂݂݅݊݅ܣ ൌ
1

ݐݏ݋ܥ
	 (13)

Dynamic scheduling in the engineer‐to‐order (ETO) assembly process by the combined immune algorithm and simulated …

Advances in Production Engineering & Management 14(3) 2019 277

Identify antigen
Set system parameters and generate initial

population

Evaluate the affinity of the antibodies

Cloning
selection

Affinity
maturation

Randomly select s solutions in the best population and make
sure the best one is among them

Label the solutions and perform the following steps in sequence
Define m=1

N

Parameter setting
Evaluate the objective function f(m) of initial solution m

Compute the deviation △=f(n)‐f(m)

Generate the neighbourhood solution
Evaluate the objective function f(n) of neighbourhood solution n

N

Y

YStop condition
satisfied?

Update the current
population

△<0

Accept the neighbourhood solution

Calculate the possibility

p=exp(‐△/ti)

P>random(0,1)

Stop condition
satisfied?

Iteration number
satisfied?

Record the solution
m=m+1

Decrease the
temperature
ti+1=α*ti

N

N

Y

Y

Update memory

Elite reservation
strategy

loop number=m
Select the m‐th solution as the initial solution

Select the best solution in the population and output as the best result

loop number =s ?

Y

N

N

Y

	
Fig.	5	Framework	of	the	hybrid	algorithm	

Step	3:	Cloning	selection		

The	 cloning	 selection	 is	 proportional	 to	 the	 affinity	 value	 and	 the	 better	 antibodies	will	 have	
more	chance	of	being	proliferated.	All	 the	proliferated	antibodies	are	assembled	 in	a	mutating	
pool	 and	 the	 antibodies	 with	 higher	 affinity	 would	 have	 more	 clones.	 The	 cloning	 selection	
probability	of	each	antibody	is	calculated	as	shown	in	Eq.	14:	

ሻܥሺܴܱ݃݊݅݊݋݈ܿ	݂݋	݁ݐܴܽ ൌ
ݕݐ݂݂݅݊݅ܣ ݁ݑ݈ܽݒ ݂݋ ݊݋݅ݐݑ݈݋ݏ

݈ܽݐ݋ܶ ݕݐ݂݂݅݊݅ܽ ݁ݑ݈ܽݒ ݂݋ ݊݋݅ݐݑ݈݋ݏ ݅݊ ݄݁ݐ ݊݋݅ݐ݈ܽݑ݌݋݌
	

(14)

Step	4:	Affinity	maturation		

The	 affinity	maturation	 is	 to	make	 random	 changes	 in	 the	 proliferated	 antibodies	 in	 order	 to	
generate	better	antibodies.	The	new	solutions	are	structurally	and	behaviourally	similar	to	their	
creators	but	not	the	exactly	same.	The	clones	with	different	affinity	suffer	from	different	rate	of	
change.	The	clones	with	higher	affinity	will	suffer	a	slight	change	and	the	clones	with	lower	affin‐
ity	will	suffer	a	higher	change.		

If	the	termination	criterion	satisfies,	usually	a	special	number	of	generations	or	a	sufficiently	
good	 fitness,	 then	 stop	 IA	phase,	 otherwise	 continue.	The	 IA	phase	 could	provide	diverse	and	
elite	initial	solutions	for	the	SA	phase.	

Simulated annealing phase

Simulated	annealing	(SA)	is	a	method	which	models	the	physical	process	of	heating	a	material	
and	then	slowly	lowering	the	temperature	until	the	lowest‐energy	state	is	reached.	At	each	vir‐
tual	annealing	temperature,	 the	simulated	annealing	algorithm	generates	a	neighbour	solution	

Jiang, Xi

278 Advances in Production Engineering & Management 14(3) 2019

to	the	problem.	The	acceptance	of	the	neighbour	solution	is	based	on	the	satisfaction	of	the	Me‐
tropolis	criterion,	and	this	procedure	is	iterated	until	convergence.	

Step	1:	Initialization	

Set	the	parameters,	the	number	of	stages	(S)	and	number	of	iterations	(I).	In	our	algorithm,	the	
initialization	 solution	 of	 SA	 phase	 is	 provided	 by	 IA	 phase.	 Individuals	 of	 the	 best	 population	
were	randomly	selected,	making	sure	that	the	global	best	solution	was	included.	The	solutions	
were	numbered	and	the	following	steps	were	performed	in	sequence.	

Step	2:	The	neighbourhood	solution	generation	

The	neighbourhood	 structure	plays	 a	 very	 important	 role	 in	 a	 local	 search.	 It	 is	 a	mechanism	
which	can	apply	a	small	perturbation	to	the	given	solution	in	order	to	obtain	a	new	set	of	neigh‐
bouring	 solutions.	We	 implemented	 three	different	neighbourhood	operators	proposed	 in	our	
previous	work	[25].	

Step	3:	Evaluation	and	Comparison	

Evaluate	the	objective	function	of	initial	solution	and	neighbour	solution.	The	deviation	between	
objective	function	of	two	candidate	solutions	is	computed	as	∆ൌ ݂ሺ݊ሻ െ ݂ሺݏሻ.	If	∆൑ 0,	the	neigh‐
bour	 solution	݊	is	 accepted.	Otherwise,	 generate	 a	 random	number	ݎ ∈ ሾ0,1ሿ	and	 accepting	 the	
neighbour	solution	݊	if	ݎ ൏ exp	ሺെ∆/ݐ௜ሻ.	ݐ௜	is	the	current	temperature.		

Step	4:	Termination	criterion	

At	each	iteration,	the	temperature	is	fixed.	If	the	number	of	completed	iterations	is	equal	to	ܫ	and	
terminate	 the	 current	 stage.	 The	 temperature	 decreases	 from	one	 stage	 to	 another	 under	 the	
cooling	schedule	mechanism.	We	adopt	the	exponential	cooling	schedule,	the	temperature	of	݅‐th	
stage	is	calculated	as	ݐ௜ ൌ ߙ ∗ α	and	௜ିଵݐ ∈ ሺ0,1ሻ	is	the	temperature	decreasing	rate.		

The	termination	criterion	was	used	to	determine	whether	the	proposed	method	should	stop.	
If	the	annealing	temperature	is	reduced	to	the	extreme	point	the	stop	criterion	is	fulfilled.		

4. Results and discussion

In	this	section,	we	presented	the	results	of	computational	studies	and	evaluate	the	performance	
of	the	proposed	algorithm.	The	algorithms	were	coded	in	MATLAB	R2016a,	running	on	the	per‐
sonal	computer	configured	with	16GB	memory	and	Intel	(R)Core	(TM)i7‐6700.	Instances	in	this	
paper	come	 from	the	MISTA	2013	Challenge,	which	combine	multiple	MRCPSP	 instances	 from	
Project	Scheduling	Problem	Library	(PSPLIB)	[26].	We	introduce	randomly	generated	disruption	
scenarios	with	the	method	proposed	in	the	literature	[11].		

4.1 Parameters analysis

We	set	up	experiments	 to	analyse	 the	 impact	of	 starting	 time	deviation	 tolerance	and	horizon	
window	size.	We	select	the	instance	A5	and	the	makespan	of	initial	schedule	is	258.	Randomly	
select	 10	 tasks	 in	 the	 initial	 schedule,	 and	 a	 duration	 increase	∆௜௝	is	 generated	 as	 a	 uniformly	
distributed	random	variable	from	the	interval	ሾ1,0.3 ∗ ݀௜௝ሿ,	as	the	maximal	magnitude	of	the	dis‐
ruption	equal	30	%	of	the	deterministic	task	duration	݀௜௝.	Ten	times	calculation	under	different	
deviation	tolerance	are	taken	to	solve	the	above	example.	The	cost,	rescheduling	times	and	the	
average	computation	time	are	shown	in	Table	1.	It	can	be	seen	that	when	the	starting	time	devi‐
ation	tolerance	is	3,	the	cost	is	minimized.	Ten	times	calculation	under	different	size	of	horizon	
window	are	taken	to	solve	the	above	example,	in	which	the	starting	time	deviation	tolerance	is	3.	
The	cost,	rescheduling	times	and	the	average	computation	time	are	shown	in	Table	2.	When	the	
horizon	window	size	is	20,	the	solution	is	optimal.	
	 	

Dynamic scheduling in the engineer‐to‐order (ETO) assembly process by the combined immune algorithm and simulated …

Advances in Production Engineering & Management 14(3) 2019 279

Table	1	The	results	of	the	starting	time	deviation	tolerance	experiments	
The	tolerance	of	starting	time	deviation	 Cost Rescheduling	times Computation	time(s)
1	 225.1 12 132.9	
2	 128.3 11 115	
3	 94.9 10 100.7	
4	 118.1 9 92.4	
5	 178.5 8 76.3	
6	 212.7 6 66.2	
7	 258.7 5 56.6	
8	 335.4 4 38.6	
9	 369.2 2 24.8	
10	 458.5 1 12.6	
11	 540 0 0	
12	 540 0 0	

	
Table	2	The	results	of	the	size	of	horizon	window	experiments	

The	size	of	horizon	window Cost Rescheduling	times Computation	time(s)
10	 293.4 19 78.2	
15	 102.5 13 92.2	
20	 68.1 10 99.8	
25	 107.9 8 109.5	
30	 202.2 7 124.1	
60	 684.7 4 187.7	
90	 896.9 3 277.1	
120	 1397.7 2 302	
150	 1870.2 2 372.9	
180	 2137.5 2 494	
210	 2336.8 1 529.6	
230	 2583.4 1 567.2	

4.2 Performance evaluation

Ten	instances	are	selected	from	MISTA	2013	Challenge	and	introduced	the	disruption	scenarios	
to	model	the	uncertainty	events.	The	details	of	ten	instances	is	shown	in	Table	3.	To	evaluate	the	
proposed	algorithm,	comparisons	were	made	with	Immune	Algorithm	(IA)	proposed	by	Mobini	
[27],	Simulated	Annealing	 (SA)	proposed	by	 Józefowska	 [28]	and	Genetic	Algorithm	(GA)	pro‐
posed	by	Goncharvo	[29].	The	parameters	of	GA,	IA,	and	SA	are	set	by	trial	and	error.	The	sched‐
uling	results	of	IA‐SA,	GA,	IA,	and	SA	are	shown	in	Table	4,	 including	the	best	makespan	(BST)	
and	the	average	makespan	(AVG)	on	ten	independent	runs.	The	best	BST	results	of	each	instance	
are	set	in	bold.	From	Table	4,	it	is	shown	that	the	BST	and	AVG	values	obtained	by	IA‐SA	are	bet‐
ter	than	those	obtained	by	other	three	algorithms	on	all	instances,	which	demonstrate	IA‐SA	has	
the	superiority	of	searching	quality	and	robustness.	The	average	computation	time	of	four	algo‐
rithms	 is	 shown	 in	 Table	 5	 and	 illustrates	 how	 the	 computational	 time	 of	 different	 methods	
changes	with	the	increase	of	problem	sizes.	
	

Table	3	Benchmark	instances	for	dynamic	scheduling	algorithm	
Instance	 Number	of	projects	 Total	number	of	tasks Number	of	disruption	

scenarios	
The	number	of	concurrent	
execution	tasks	in	each	project	

A3	 2	 60	 6 2
A6	 5	 150	 15 3
A7	 10	 100	 10 2
B2	 10	 200	 20 3
B4	 15	 150	 15 2
B5	 15	 300	 30 3
B6	 15	 450	 45 2
B10	 20	 420	 42 3
X8	 20	 400	 40 2
X9	 20	 600	 60 3

	
 	

Jiang, Xi

280 Advances in Production Engineering & Management 14(3) 2019

Table	4	Cost	of	four	algorithms	over	ten	runs	
Instance	 IA	 SA	 GA IA‐SA	

AVG	 BST	 AVG	 BST AVG BST AVG	 BST
A3	 52.5	 42 66.4	 51 62.9 49 42.4	 37
A6	 228	 200	 292.9 203 282.9 184 173.9	 161
A7	 236.3	 219	 288.7 217 271 211 170.3	 139
B2	 335	 308	 395.6 365 370.7 324 312.2	 301
B4	 426.5	 325	 475.1 433 437.7 354 396.4	 298
B5	 584.7	 519	 721.3 679 690.6 616 541.7	 510
B6	 1043	 910	 1278	 989 1035 936 972	 894
B10	 1398	 1293	 1524	 1387 1376 1295 1301	 1277
X8	 1045	 982	 1321	 1019 992 926 958	 905
X9	 1802	 1703	 2317	 2013 1779 1695 1722	 1658

	
Table	5	Average	computation	time	of	four	algorithms	

Instance	 Computation	time(s)
IA	 SA GA IA‐SA	

A3	 24	 18.3 37.5 29.4	
A6	 42.5	 30.4 62.7 48.4	
A7	 38.5	 27.1 52.3 40.5	
B2	 59.2	 39.2 81.9 63	
B4	 36.2	 26.2 50.1 39.8	
B5	 98.6	 78.6 165.3 102.6	
B6	 192.5	 142.2 291.7 208.2	
B10	 178.5	 139.6 269.3 185.1	
X8	 207.8	 152.3 305.2 218.4	
X9	 278.1	 203.5 425.2 301.9	
	
Furthermore,	 to	 compare	 results	obtained	 in	different	 instances,	 relative	percentage	devia‐

tion	(RPD)	is	introduced	as	the	only	dependent	variable	of	variance	analysis,	as	shown	in	Eq.15,	
Where	݈݃ܣ௦௢௟	represents	 the	 objective	 value	 obtained	 by	 single	 algorithm	 running,	 and	ܵܤ ௦ܶ௢௟	
represents	 the	best	solution	over	 the	whole	set	of	results	concerning	the	same	 instance.	Obvi‐
ously,	the	smaller	ܴܲܦ	value	is,	the	better	the	result	is.	

ܦܴܲ ൌ
௦௢௟݈݃ܣ െ ܵܤ ௦ܶ௢௟

ܵܤ ௦ܶ௢௟
ൈ 100	

(15)

The	ANOVA	and	Least‐Significant	Difference	(LSD)	tests	were	conducted	in	SPSS	to	check	the	
results	transformed	into	RPD	value.	Test	results	revealed	that	under	confidence	interval	of	95	%,	
the	݌	value	was	0,	which	means	there	are	significant	differences	in	performance	of	the	four	algo‐
rithms.	Fig.	6	depicts	mean	plot	with	LSD	intervals	for	RPD	value	obtained	by	four	algorithms.	In	
this	measure,	the	proposed	algorithm	outperforms	the	other	three	algorithms.	

	
Fig.	6	Mean	plot	and	LSD	intervals	for	algorithms	in	RPD	value	

Dynamic scheduling in the engineer‐to‐order (ETO) assembly process by the combined immune algorithm and simulated …

Advances in Production Engineering & Management 14(3) 2019 281

4.3 Case study

To	demonstrate	the	applicability	of	the	proposed	method	from	a	practical	point	of	view,	a	case	
that	uses	industrial	data	from	a	collaborating	steam	turbine	company	was	considered.	The	case	
was	also	shown	in	our	previous	work	[25].	We	run	PSO‐TS	algorithm	in	our	previous	work	ten	
times	and	select	the	best	schedule	as	the	initial	schedule.	The	makespan	of	the	initial	schedule	is	
1524	hours.	 To	model	 the	 uncertainty,	 a	 set	 of	 disruption	 scenarios	 has	 been	 introduced	 and	
extended	the	task	duration	based	on	historical	production	records.	Some	task	processing	time	
variations	are	higher	than	the	deviation	tolerance,	while	some	are	lower	than	the	deviation	tol‐
erance.	The	processing	time	variations	have	been	accumulated.	The	scenarios	defined	only	 for	
the	 assembling	 and	 testing	 process	 which	 often	 exceed	 the	 time	 limit.	 Then	 we	 run	 four	 re‐
scheduling	algorithms	ten	independent	runs	and	select	the	best	result.	The	makespan	of	the	IA	
algorithm	 is	1913	hours	 (cost:	4920).	The	makespan	of	 the	SA	algorithm	 is	1938	hours	 (cost:	
7012).	The	makespan	of	the	GA	algorithm	is	1912	hours	(cost:	5033).	The	Gantt	chart	of	the	IA‐
SA	algorithm	can	be	seen	in	Fig.	7,	in	which	the	makespan	is	1887	hours	(cost:	4308).	In	Fig.	7,	
the	horizontal	axis	represents	the	time	horizon,	the	vertical	axis	represents	the	project	number,	
the	box	represents	the	task,	the	number	in	the	box	represents	the	task	number	and	the	length	
represents	 the	duration	 of	 the	 task.	We	 could	 see	 the	 sequence,	 the	duration	of	 tasks	 in	 each	
project	 and	 some	 tasks	 can	 be	 executed	 concurrently	 under	 space	 constraints.	 The	 difference	
between	 rescheduled	makespan	 and	 initial	makespan	 is	 less	 than	 the	accumulated	processing	
time	variations.	Comparison	of	the	four	algorithms	can	be	seen	in	Fig.		8(a),	8(b).	It	is	clear	that	
IA‐SA	 algorithm	 outperforms	 the	 other	 three	 algorithms	 and	 can	 be	 assisted	 in	 the	 dynamic	
scheduling	of	steam	turbines	assembly	process.	
	

	

Fig.	7	Gantt	chart	of	IA‐SA	algorithm	

	

(a)	 (b)	

Fig.	8	Comparison	of	makespan	(a),	and	comparison	of	cost	(b)	

Jiang, Xi

5. Conclusion
In order to overcome the dynamic scheduling problem in ETO assembly process, we proposed
the hybrid algorithm based on rolling horizon strategy. After introduced the concept of task
starting time deviation and designed the rolling horizon strategy based on the tolerance of start-
ing time deviation, we improved the traditional rolling horizon strategy to avoid frequent re-
scheduling. The time-based rescheduling window mechanism was designed in order to realize
the buffer of dynamic event. To guarantee the computational efficiency of the rolling reschedul-
ing algorithm, based on the rolling horizon procedure, the hybrid approach combining immune
algorithm and simulated annealing algorithm was proposed, and tested on different scale
benchmark instances and industrial case. The computational results demonstrated the superior-
ity of proposed algorithm.

Directions for future research can be outlined as follows: Firstly, the computational time of
the proposed hybrid approach grows with the size of instances, the more efficient algorithms
should be considered. Secondly, the problem we studied has not taken the multi-objectives into
account, such as total tardiness, the deviation from the original plan should be considered.
Thirdly, some heavy and large components needed to be transported by crane, thus the dynamic
scheduling and crane rescheduling should be dealt with together.

References
[1] Jana, T.K., Saha, P., Sarkar, B., Saha, J. (2013). Implementation of agent based holonic control in discrete manufac-

turing, Advances in Production Engineering & Management, Vol. 8, No. 3, 157-168, doi: 10.14743/apem2013.
3.163.

[2] Grabenstetter, D.H., Usher, J.M. (2015). Sequencing jobs in an engineer-to-order engineering environment, Pro-
duction & Manufacturing Research, Vol. 3, No. 1, 201-217, doi: 10.1080/21693277.2015.1035461.

[3] Alfieri, A., Tolio, T., Urgo, M. (2012). A project scheduling approach to production and material requirement
planning in manufacturing-to-order environments, Journal of Intelligent Manufacturing, Vol. 23, No. 3, 575-585,
doi: 10.1007/s10845-010-0396-1.

[4] De Lit, P., Latinne, P., Rekiek, B., Delchambre, A. (2001). Assembly planning with an ordering genetic algorithm,
International Journal of Production Research, Vol. 39, No. 16, 3623-3640, doi: 10.1080/00207540110056135.

[5] Alfieri, A., Tolio, T., Urgo, M. (2011). A two-stage stochastic programming project scheduling approach to pro-
duction planning, The International Journal of Advanced Manufacturing Technology, Vol. 62, No. 1-4, 279-290, doi:
10.1007/s00170-011-3794-4.

[6] Hytonen, J., Niemi, E., Toivonen, V. (2008). Optimal workforce allocation for assembly lines for highly customised
low-volume products, International Journal of Services Operations and Informatics, Vol. 3, No. 1, 28-39, doi:
10.1504/ijsoi.2008.017703.

[7] Jiang, P., Ding, J.L., Guo, Y. (2018). Application and dynamic simulation of improved genetic algorithm in produc-
tion workshop scheduling, International Journal of Simulation Modelling, Vol. 17, No. 1, 159-169, doi:
10.2507/IJSIMM17(1)CO3.

[8] Yang, X.P., Gao, X.L. (2018). Optimization of dynamic and multi-objective flexible job-shop scheduling based on
parallel hybrid algorithm, International Journal of Simulation Modelling, Vol. 17, No. 4, 724-733, doi: 10.2507/
IJSIMM17(4)CO19.

[9] Hicks, C., Song, D.P., Earl, C.F. (2007). Dynamic scheduling for complex engineer-to-order products, International
Journal of Production Research, Vol. 45, No. 15, 3477-3503, doi: 10.1080/00207540600767772.

[10] Vieira, G.E., Herrmann, J.W., Lin, E. (2003). Rescheduling manufacturing systems: A framework of strategies,
policies, and methods, Journal of Scheduling, Vol. 6, No. 1, 39-62, doi: 10.1023/A:1022235519958.

[11] Deblaere, F., Demeulemeester, E., Herroelen, W. (2011). Reactive scheduling in the multi-mode RCPSP, Comput-
ers & Operations Research, Vol. 38, No. 1, 63-74, doi: 10.1016/j.cor.2010.01.001.

[12] Herroelen, W., Leus, R. (2004). Robust and reactive project scheduling: A review and classification of procedures,
International Journal of Production Research, Vol. 42, No. 8, 1599-1620, doi: 10.1080/00207540310001638055.

[13] Herroelen, W., Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials, European
Journal of Operational Research, Vol. 165, No. 2, 289-306, doi: 10.1016/j.ejor.2004.04.002.

[14] Demeulemeester, E., Herroelen, W., Leus, R. (2008). Proactive-reactive project scheduling, In: Artigues, C.,
Demassey, S., Néron, E. (eds.), Resource-constrained project scheduling: Models, algorithms, extensions and appli-
cations, Wiley-ISTE, London, United Kingdom, 203-211, doi: 10.1002/9780470611227.ch13.

[15] Van de Vonder, S., Ballestín, F., Demeulemeester, E., Herroelen, W. (2007). Heuristic procedures for reactive
project scheduling, Computers & Industrial Engineering, Vol. 52, No. 1, 11-28, doi: 10.1016/j.cie.2006.10.002.

[16] Zhu, G., Bard, J.F., Yu, G. (2005). Disruption management for resource-constrained project scheduling, Journal of
the Operational Research Society, Vol. 56, No. 4, 365-381, doi: 10.1057/palgrave.jors.2601860.

282 Advances in Production Engineering & Management 14(3) 2019

https://doi.org/10.14743/apem2013.3.163
https://doi.org/10.14743/apem2013.3.163
https://doi.org/10.1080/21693277.2015.1035461
https://doi.org/10.1007/s10845-010-0396-1
https://doi.org/10.1080/00207540110056135
https://doi.org/10.1007/s00170-011-3794-4
https://doi.org/10.1007/s00170-011-3794-4
https://doi.org/10.1504/ijsoi.2008.017703
https://doi.org/10.1504/ijsoi.2008.017703
https://doi.org/10.2507/IJSIMM17(1)CO3
https://doi.org/10.2507/IJSIMM17(1)CO3
https://doi.org/10.2507/IJSIMM17(4)CO19
https://doi.org/10.2507/IJSIMM17(4)CO19
https://doi.org/10.1080/00207540600767772
https://doi.org/10.1023/A:1022235519958
https://doi.org/10.1016/j.cor.2010.01.001
https://doi.org/10.1080/00207540310001638055
https://doi.org/10.1016/j.ejor.2004.04.002
https://doi.org/10.1002/9780470611227.ch13
https://doi.org/10.1016/j.cie.2006.10.002
https://doi.org/10.1057/palgrave.jors.2601860

Dynamic scheduling in the engineer-to-order (ETO) assembly process by the combined immune algorithm and simulated …

[17] Chakrabortty, R.K., Sarker, R.A., Essam, D.L. (2016). Multi-mode resource constrained project scheduling under
resource disruptions, Computers & Chemical Engineering, Vol. 88, 13-29, doi: 10.1016/j.compchemeng.2016.01.
004.

[18] Sonmez, R., Uysal, F. (2015). Backward-forward hybrid genetic algorithm for resource-constrained multiproject
scheduling problem, Journal of Computing in Civil Engineering, Vol. 29, No. 5, Article number: 04014072, doi:
10.1061/(ASCE)CP. 1943-5487.0000382.

[19] Gholamian, M.R., Heydari, M. (2017). An inventory model with METRIC approach in location-routing-inventory
problem, Advances in Production Engineering & Management, Vol. 12, No. 2, 115-126, doi: 10.14743/apem
2017.2.244.

[20] Qin, W., Zhang, J., Song, D. (2018). An improved ant colony algorithm for dynamic hybrid flow shop scheduling
with uncertain processing time, Journal of Intelligent Manufacturing, Vol. 29, No. 4, 891-904, doi: 10.1007/
s10845-015-1144-3.

[21] Deblaere, F., Demeulemeester, E., Herroelen, W. (2011). Proactive policies for the stochastic resource-
constrained project scheduling problem, European Journal of Operational Research, Vol. 214, No. 2, 308-316, doi:
10.1016/j.ejor.2011.04.019.

[22] De Castro, L.N., Von Zuben, F.J, (1999). Artificial immune systems: Part I – Basic theory and applications, Tech-
nical Report, Technical report, RT DCA 01/99, 95 pages.

[23] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. (1953). Equation of state calculations by
fast computing machines, The Journal of Chemical Physics, Vol. 21, No. 6, 1087-1092, doi: 10.1063/1.1699114.

[24] Cao, Q.K., Qin, M.N., Ren, X.Y. (2018). Bi-level programming model and genetic simulated annealing algorithm for
inland collection and distribution system optimization under uncertain demand, Advances in Production Engi-
neering & Management, Vol. 13, No. 2, 147-157, doi: 10.14743/apem2018.2.280.

[25] Jiang, C., Hu, X., Xi, J. (2019). Integrated multi-project scheduling and hierarchical workforce allocation in the
ETO assembly process, Applied Sciences, Vol. 9, No. 5, 885-904, doi: 10.3390/app9050885.

[26] Wauters, T., Kinable, J., Smet, P., Vancroonenburg, W., Vanden Berghe, G., Verstichel, J. (2016). The multi-mode
resource-constrained multi-project scheduling problem, Journal of Scheduling, Vol. 19, No. 3, 271-283, doi:
10.1007/s10951-014-0402-0.

[27] Mobini, M., Mobini, Z., Rabbani, M. (2011). An artificial immune algorithm for the project scheduling problem
under resource constraints, Applied Soft Computing, Vol. 11, No. 2, 1975-1982, doi: 10.1016/j.asoc.2010.06.013.

[28] Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J. (2001). Simulated annealing for multi-mode re-
source-constrained project scheduling, Annals of Operations Research, Vol. 102, No. 1-4, 137-155, doi: 10.1023/
A:1010954031930.

[29] Goncharov, E.N., Leonov, V.V. (2017). Genetic algorithm for the resource-constrained project scheduling problem,
Automation and Remote Control, Vol. 78, No. 6, 1101-1114, doi: 10.1134/S0005117917060108.

Advances in Production Engineering & Management 14(3) 2019 283

https://doi.org/10.1016/j.compchemeng.2016.01.004
https://doi.org/10.1016/j.compchemeng.2016.01.004
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000382
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000382
https://doi.org/10.14743/apem2017.2.244
https://doi.org/10.14743/apem2017.2.244
https://doi.org/10.1007/s10845-015-1144-3
https://doi.org/10.1007/s10845-015-1144-3
https://doi.org/10.1016/j.ejor.2011.04.019
https://doi.org/10.1016/j.ejor.2011.04.019
https://doi.org/10.1063/1.1699114
https://doi.org/10.14743/apem2018.2.280
https://doi.org/10.3390/app9050885
https://doi.org/10.1007/s10951-014-0402-0
https://doi.org/10.1007/s10951-014-0402-0
https://doi.org/10.1016/j.asoc.2010.06.013
https://doi.org/10.1023/A:1010954031930
https://doi.org/10.1023/A:1010954031930
https://doi.org/10.1134/S0005117917060108

