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A B S T R A C T	   A R T I C L E   I N F O	

This	 paper	 presents	 a	 novel Approximate	Dynamic	Programming	 (ADP)	 ap‐
proach	 to	 solve	 large‐scale	 nonlinear	 constrained	 Equipment	 Replacement	
(ER)	problems.	 Since	ADP	 requires	 accurate	 estimations	of	 states	 for	 future
periods,	a	heuristic	estimator	based	on	data	clustering	was	developed	for	the	
case	 study	 of	 this	 paper	with	 small	 number	 of	 sampling	 periods.	 This	 ADP	
approach	uses	a	Rollout	Algorithm	to	formulate	the	problem	in	a	Rolling	hori‐
zon.	The	model	was	solved	using	Genetic	Algorithm	(GA).	This	framework	was	
successfully	applied	for	the	decision	making	process	of	replacement	/	mainte‐
nance	of	497	 transformers	 in	 a	power	distribution	company,	which	 led	 to	a	
significant	reduction	in	the	expected	costs.	The	proposed	framework	possess‐
es	 favourable	 features	 such	 as	minimizing	 the	 effect	 of	 uncertainties	 in	 the
state	variables	and	measurement	inaccuracies,	which	make	the	model	robust	
and	 reliable.	 This	work	 provides	 a	 novel	 general	 approach	 that	 can	 be	 em‐
ployed	for	other	industrial	cases	and	operations	research	problems.	
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1. Introduction 

Equipment	replacement	(ER)	is	an	important	decision	process	that	nearly	all	industries	are	deal‐
ing	 with.	 ER	 optimization	 is	 a	 common	 topic	 in	management	 science,	 and	 evolves	 constantly	
with	the	progress	in	operations	research	techniques.	The	literature	available	in	this	area	focuses	
on	decision	making	regarding	maintenance	or	replacement	of	equipment	over	a	 limited	or	un‐
limited	horizon,	the	examination	of	gradual	changes	in	a	technology,	as	well	as	the	emergence	of	
a	new	technology.	ER	problem	has	always	been	studied	over	the	last	century.	In	the	early	twen‐
tieth	century,	Taylor	and	Hoteling	separately	considered	the	cost	of	depreciation	in	ER	calcula‐
tions.	 In	recent	years,	 several	studies	have	 investigated	 the	replacement	of	equipment	such	as	
transportation	fleet	[1],	conveyor	belts	[2],	medical	equipment	[3],	reactor	equipment	(consider‐
ing	 risk	 assessment)	 [4],	 heavy	mining	machinery	 [5],	 and	 information	 technology	 (IT)	 equip‐
ment	[6].		

In	classical	studies	of	ER,	the	goal	is	to	find	a	policy	to	minimize	discounted	costs,	while	the	
interest	rate	and	equipment	costs	usually	remain	constant.	Annual	costs	of	equipment	operation	
and	ownership	are	calculated	during	their	lifetime,	and	an	optimal	life	for	the	equipment	is	ob‐
tained	 by	minimizing	 these	 costs.	 It	 can	 be	 clearly	 inferred	 from	 the	 previous	works	 that	 the	
answer	 to	 a	 specific	 problem	may	 considerably	 vary	 by	 changing	 the	 assumptions,	where	 the	
answer	 usually	 changes	 from	 an	 optimal	 to	 a	 sub‐optimal	 or	 even	 a	 non‐optimal	 one.	 Future	
state	variables	are	predicted	 from	the	previous	and	current	ones,	and	 the	control	parameters.	
State	variables	are	evaluated	based	on	measurements	of	a	 limited	number	of	parameters	with	
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certain	 inaccuracies;	 therefore,	 the	 future	state	variables	can	only	be	predicted	approximately.	
Leung	and	Tanchoco	[7]	proposed	that	some	problems	can	be	better	handled	by	making	an	inte‐
grated	 decision	 about	 the	 equipment	 replacement.	 One	 of	 the	 most	 important	 factors	 which	
should	be	considered	in	making	decisions,	especially	in	ER,	is	to	determine	the	prediction	hori‐
zon,	including	limited,	unlimited,	and	rolling	horizons	[8].	Fraser	and	Posey	[9]	presented	a	four‐
stage	framework	for	analysing	ER	based	on	engineering	economics,	including	determination	of	
an	alternative	approach,	prediction	of	 the	monetary	 flow	 for	each	approach,	 calculation	of	 the	
present	value	of	the	monetary	flow	for	each	approach,	and	select	of	the	solution	method	with	the	
optimal	present	value.	This	method	addresses	ER	on	limited	and	unlimited	horizons,	as	well	as	
with	and	without	considering	technological	changes.	

In	 modern	 economics	 literature,	 two	 categories	 of	 endogenous	 and	 exogenous	 factors	 are	
considered	for	economic	fluctuations.	In	the	1960s,	some	economic	theorists	believed	that	eco‐
nomic	fluctuations	are	similar	to	echoes,	repeating	over	years	with	similar	intensities	and	dura‐
tions.	Although	 this	 theory	has	been	rejected	 in	modern	economics,	Boucekkine‚	Germain‚	and	
Licandro	 [10]	believed	 that	 this	 echo	model	 can	be	modified	and	used	 for	ER	problems.	They	
claimed	that	it	can	be	shown	that	this	echo	is	valid	for	ER.	In	addition,	they	proposed	that	profit‐
ability	of	different	equipment	with	different	technologies	can	be	investigated	by	examination	of	
possible	solutions	for	a	problem.	However,	this	needs	a	huge	amount	of	complicated	calculation.	
Their	study	showed	that	the	Dynamic	Programming	approach	to	ER	is	largely	connected	to	the	
economic	echoes	model.	

One	of	the	current	problems	in	Dynamic	Programming	as	well	as	in	optimal	control	is	to	find	
a	solution	to	integral	equations	to	obtain	an	optimal	policy.	By	applying	an	appropriate	formula‐
tion,	 integral	equations	were	developed	 for	solving	ER	problems	using	Dynamic	Programming	
[11],	 and	 later	employed	 in	 several	 studies.	Motamedi‚	Hadizadeh‚	 and	Peyghami	 [12]	 tried	 to	
find	a	numerical	solution	to	the	integral	equations	of	[11].	They	used	the	Adomian	Decomposi‐
tion	Method	to	solve	the	equations,	and	presented	a	numerical	example	of	ER	to	present	the	al‐
gorithm	 solution.	 Jacobsen	 [13]	 employed	 system	dynamic	methods	 for	 ER	 decisions.	He	 first	
identified	the	subsystems	and	their	components	for	his	case	study,	and	then	estimated	the	future	
status	of	these	subsystems	using	the	existing	data.	The	decision	variable	in	his	study	was	to	re‐
pair	or	replace	equipment.	

Two	important	features	of	a	suitable	model	are	its	range	of	applicability	for	a	particular	prob‐
lem,	as	well	as	its	prevalence.	By	reviewing	the	previous	studies	on	ER	over	the	last	70‐years,	a	
common	point	can	be	clearly	 found,	 i.e.,	practical	applications	of	most	of	 the	proposed	models	
are	not	yet	widespread.	Therefore,	it	can	be	concluded	that	these	models	probably	have	not	con‐
sidered	some	practical	factors	with	significant	effects	on	decision‐making	process.	According	to	
[14],	except	a	 few	cases	of	Stochastic	Dynamic	Programming,	 there	has	been	 little	progress	 in	
this	area.	

Dynamic	Programming	solves	a	problem	in	successive	steps,	and	adopts	an	optimal	policy	to	
satisfy	the	principle	of	optimality.	An	ER	model	seeks	an	optimal	decision	for	preserving	or	re‐
placement	of	equipment	in	consecutive	time	intervals;	thus	the	Dynamic	Programming	method	
has	been	widely	used	in	solving	ER	problems.	Dynamic	Programming	was	introduced	in	[15]	and	
applied	 for	ER	by	Bellman	 [16].	Dynamic	Programming	 is	 in	 fact	 a	 general	 solution	 approach.	
Unlike	 linear	or	quadratic	programming	in	which	the	structures	of	 input	data	and	analysis	are	
quite	clear,	in	solving	a	particular	problem,	the	solution	method	should	be	adapted	to	the	prob‐
lem.	Using	the	general	structures	proposed	in	Dynamic	Programming,	a	unique	solution	method	
is	established	considering	 the	main	principle	of	Dynamic	Programming	 ‐	 the	principle	of	opti‐
mality	 [17].	 On	 the	 other	 hand,	 unlike	 quadratic	 programing	 which	 can	 solve	 problems	 with	
many	variables,	 the	basic	model	of	Dynamic	Programming	is	only	suitable	 for	small‐size	prob‐
lems.	 Increasing	 the	 number	 of	 variables	 usually	 increases	 the	 volume	 of	 computations,	 or	 in	
other	word	causes	“curse	of	dimensionality”.	Many	problems	can	be	modelled	and	solved	using	
Dynamic	Programming.	Depending	on	whether	available	information	and	variables	are	definite	
or	random,	various	methods	can	be	constructed	to	solve	the	problem.	In	the	classical	literature	
of	Dynamic	Programming,	one	can	find	well‐known	problems	such	as	stagecoach	in	the	shortest	
path,	warehouse,	distribution	of	effort,	budgeting,	Knapsack,	and	ER.	The	basic	model	of	Dynam‐
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ic	Programming	 is	discrete,	and	mathematical	principles	and	discrete	control	are	employed	 to	
solve	the	model.	Three	main	components	of	each	Dynamic	Programming	model	are	state	varia‐
ble(s),	decision	or	control	variable(s)	and	objective	function.	
	 A	 trade‐off	 always	 should	 be	 performed	 between	 the	 simplicity	 and	 possibility	 of	 a	model	
analysis	with	the	level	of	model	details	reflecting	the	real	world	conditions.	To	make	a	balance	
between	 them,	 two	approaches	can	be	applied:	either	 the	model	can	be	simplified	as	much	as	
possible,	which	is	called	the	limited	model,	or	it	can	be	more	complicated,	which	requires	subop‐
timal	methods	to	solve	it.	Bertsekas	[18]	discussed	that	the	efficiency	of	suboptimal	methods	is	
not	less	than	limited	models.	In	this	study,	sub‐optimal	methods	were	used.	With	the	progress	in	
operations	 research,	 different	 Dynamic	 Programming	methods	 have	 been	 developed	 to	 build	
models	very	similar	to	real	problems.	A	recent	topic	in	Dynamic	Programming	has	been	the	use	
of	the	ADP	approach	to	solve	large‐scale	and	near‐real‐world	problems.	Some	algorithms	used	in	
artificial	 intelligence	 such	 as	 queuing	 and	 game	 theory	problems,	 and	 the	 optimal	 control	 are	
examples	of	modern	problems	closely	related	to	Approximate	Dynamic	Programming	[18].	
	 In	this	study,	the	ADP	approach	has	been	used	to	formulate	and	solve	an	ER	problem	for	the	
first	time.	First,	the	novel	ADP	framework	to	solve	successive	problems	is	explained,	then	the	ER	
case	study	is	described.	Finally,	it	is	discussed	that	the	framework	presented	is	able	to	provide	
optimal	decisions	for	the	ER	problem	studied.	

2. Materials and methods 

Like	 other	 Dynamic	 Programming	models,	 an	 ADP	model	 tries	 to	minimize	 (or	maximize)	 an	
objective	function	considering	constraints	during	a	decision‐making	horizon.	State	variables	for	
a	limited	or	an	unlimited	horizon	should	be	predicted	based	on	control	(decision)	variables.	The	
objective	function	is	calculated	from	the	state	variables	predicted,	and	then	optimized	using	the	
optimal	 decision	 variables.	 Sub‐optimal	 methods	 like	 heuristic	 and	meta‐heuristic	 algorithms	
are	usually	employed	for	optimization	in	ADP.		

A	difference	between	definitive	and	approximate	models	is	in	their	model	state	spaces,	where	
an	approximate	model	requires	to	predict	the	future	state	variables	of	a	system	using	available	
data	 for	 the	 current	 state	variables,	which	 involves	 some	uncertainties.	Thus,	before	 solving	a	
model,	 the	 state	variables	 should	be	estimated	based	on	 the	 control	 variables	of	 the	problem.	
Appropriate	definitive	data	should	be	determined	for	the	state	space	used	in	a	model	consider‐
ing	the	relationship	between	data.	This	is	usually	done	using	trial	and	error,	econometrics,	data	
mining,	 heuristic,	 and	 dynamic	 neural	 programming	methods	 to	minimize	 the	 approximation	
error	[18].	The	conceptual	ADP	model	adopted	from	[18]	is	shown	in	Fig.	1.	

	

	
Fig.	1	Conceptual	ADP	model	used	for	ER	problem	

2.1 State estimation 

The	first	phase	of	ADP	is	the	proper	prediction	of	the	system	state.	The	applicability	of	multivar‐
iable	methods	(mostly	used	in	econometrics,	such	as	Auto	Regressive	Moving	Average	(ARMA)	
and	Generalized	Auto	Regressive	Conditional	Heteroscedasticity	 (GARCH))	was	 examined,	 but	
appropriate	results	were	not	obtained	due	to	low	sampling	periods	of	the	case	study.	In	similar	
studies,	when	the	number	of	samples	is	high,	but	the	number	of	measured	periods	is	low,	it	has	
been	 suggested	 to	 use	 data	mining	 techniques	 for	 state	 estimation	 [19].	 Box	 and	Meyer	 [20]	
stated	that	when	the	number	of	observations	 is	much	 less	than	the	number	of	samples,	only	a	
limited	portion	of	data	have	the	major	effect	on	the	prediction	of	samples,	and	called	this	situa‐
tion	 as	 “Effect	 Sparsity”.	 In	 this	 study,	 clustering	of	 data	has	been	used	 similar	 to	 the	method	
proposed	by	[24].	This	means	that	only	those	data	that	can	provide	the	best	approximation	for	
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future	states	should	be	selected.	Here,	the	aim	is	to	apply	an	algorithm	that	minimizes	the	total	
error	which	originates	from	the	estimation	of	existing	data	( ෨ܺ௭)	and	actual	values	(ܺ௭ሻ.	For	this	
purpose,	a	heuristic	algorithm	with	two	estimators	was	developed,	which	acts	as	an	intelligent	
filter	to	select	data.	This	algorithm	will	be	described	in	section	3.3	in	details.	

2.2 Rollout algorithm 

The	model	used	for	ADP	in	this	study	has	been	constructed	based	on	“Rollout	Algorithm”,	which	
is	a	sub‐optimal	control	method	for	both	definitive	and	stochastic	systems.	At	each	stage	of	deci‐
sion‐making	process,	 the	system	is	converted	to	a	definite	state	by	 following	specific	standard	
steps,	and	then	the	Dynamic	Programming	or	its	equivalent	optimal	control	problem	is	solved	on	
a	finite	horizon	from	the	current	period	(also	called	as	rolling	horizon).	Subsequently,	 the	first	
element	of	the	decision	parameters	obtained	is	taken	as	the	decision	element	of	the	current	pe‐
riod	and	the	rest	are	left	out.	In	Rollout	Algorithm,	the	objective	function	have	been	considered	
to	be	zero	after	the	decision	horizon	[18].	
	 In	the	second	phase,	based	on	the	estimations	obtained	in	the	first	phase,	the	problem	is	for‐
mulated	and	solved	using	Dynamic	Programming.	The	system	state	was	predicted	considering	
the	previous	states	and	the	applied	decision	variables.	Although	the	decision	space	in	this	model	
is	extended	to	several	subsequent	periods,	the	goal	is	to	make	a	decision	only	in	the	current	pe‐
riod.	 For	 the	 next	 periods,	 the	 process	 of	modelling	 and	 problem	 solving	 is	 done	 again	 using	
more	accurate	inputs	for	the	model.	

2.3 Approximate dynamic programming model 

The	conceptual	model	 is	 represented	as	 the	mathematical	model	shown	 in	Fig.	2.	This	a	novel	
general	approach	that	can	be	used	in	a	variety	of	problems	in	Production	Engineering	and	oper‐
ations	research	when	a	regular	decision‐making	process	is	required.	The	model	is	also	applica‐
ble	when	the	sampling	period	of	measured	data	is	low.	

	
Fig.	2	Schematic	representation	of	the	conceptual	ADP	model		

3. Equipment replacement case study 

Khorasan‐Razavi	Electricity	Distribution	Company	(KEDC)	has	the	largest	area	of	activity	among	
other	electricity	distribution	companies	in	Iran.	KEDC	distributes	electricity	at	moderate	(20	kV)	
and	low	(400	V)	voltage	levels	in	Khorasan	Razavi	province.	Torbat‐e	Heydarieh	Electricity	of‐
fice	with	over	103,000	consumers	in	2018	is	the	third	largest	office	of	KEDC.	Transformers	are	
expensive	equipment	widely	used	in	electricity	distribution	networks,	and	usually	provide	gen‐
eral	or	private	power	supply	to	one	or	several	consumers.	The	case	study	here	includes	all	497	
general	 pole‐mount	 transformers	 in	 Torbat‐e	Heydarieh,	where	 repairing	 and	 replacement	 of	
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these	transformers	impose	a	significant	cost	to	the	Company.	These	transformers	have	different	
capacities	and	ages.	No	structured	method	was	previously	used	to	make	a	schedule	for	mainte‐
nance	or	replacement	of	the	transformers.	This	study	used	the	transformers	data	available	from	
2013	 to	 2018	 to	 build	 the	 ADP	 model,	 and	 identify	 transformers	 which	 possibly	 require	 re‐
placement	in	2019.	For	this	purpose,	it	was	necessary	to	choose	suitable	cost	and	objective	func‐
tions,	 which	 were	 determined	 using	 a	 fuzzy	 method	 based	 on	 the	 available	 information	 and	
KEDC	experts’	opinion.		

3.1 Formation of the database and normalization 

In	 this	 study,	 the	Health	 Index	 (HI)	 of	 transformers	 is	 considered	 as	 the	 state	 variable.	 Three	
factors	 that	 affect	 the	 transformer	HI	are	 temperature	difference,	oil	 condition,	 and	maximum	
load.	To	calculate	the	temperature	difference,	a	thermo‐vision	camera	was	used	to	monitor	the	
temperature	at	the	outer	surface	of	transformers.	The	difference	of	the	hottest	point	of	the	trans‐
former	and	the	ambient	temperature	was	recorded	as	the	temperature	difference.	Insulator	(oil)	
breakdown	voltage	tests	were	conducted	for	operating	transformer	to	evaluate	the	oil	condition.	
In	this	test,	the	temperature	at	which	the	oil	loses	its	insulating	properties	was	recorded.	Finally,	
the	maximum	load	is	defined	as	the	transformer	load	at	peak	times	divided	by	its	nominal	capac‐
ity.	These	data	were	available	 for	the	years	 from	2013	to	2018.	The	data	has	been	normalized	
using	the	max‐min	normalization	method	[21].	In	this	normalization	method,	if	a	factor	is	desir‐
able	to	be	higher,	it	is	called	a	positive	factor,	and	normalized	as	follows,	

௦ݔ ൌ
ݔ െ ௠௜௡ݔ

௠௔௫ݔ െ ௠௜௡ݔ
	 (1)

however,	if	it	is	desirable	to	be	lower,	then	is	called	as	a	negative	factor,	and	normalized	as	fol‐
lows,	

௦ݔ ൌ
௠௔௫ݔ െ ݔ

௠௔௫ݔ െ ௠௜௡ݔ
	 (2)

where	ݔ௦	is	the	normalized	value	of	ݔ,	and	ݔ௠௔௫	and	ݔ௠௜௡	are	the	maximum	and	minimum	values	
of	the	data	in	the	period,	respectively.	In	this	study,	the	maximum	load	and	temperature	differ‐
ence	are	negative	factors,	while	the	oil	condition	is	positive.	

3.2 Calculation of the health index as a state variable 

HI	for	the	transformer	is	defined	as	follows	[22],	

ܫܪ ൌ
∑ ௝ݓ ൈ ௝ܨܫܪ
ி
௝ୀଵ

∑ ௝ிݓ
௝ୀଵ

	 (3)

where	ܨ	is	the	number	of	the	factors	(ܨ ൌ 3	in	this	study),	ݓ௝	is	the	weighting	factor,	and	ܨܫܪ௝	is	
the	HI	for	each	factor.	The	weighting	factors	were	obtained	using	a	Fuzzy	AHP	method	with	the	
help	of	the	KEDC	experts.	The	decision‐making	team	were	asked	to	prioritize	the	three	HI	factors	
considering	 their	effects	on	 the	 transformer	health.	 If	a	 transformer	 is	 replaced	by	a	new	one,	
the	HI	of	the	new	transformer	is	considered	to	be	one	until	the	end	of	the	decision	horizon.	

3.3 Creating the state estimator model 

This	section	explains	how	to	organise	the	estimator	for	predicting	the	factors	affecting	the	state	
of	 the	 model	 (HI	 of	 the	 transformers).	 The	 actual	 data	 (ܺ௭)	 are	 available	 for	 six	 periods.	 As	
shown	in	Fig.	2,	the	data	of	each	period	in	the	first	estimation	step	( തܺ௭)	are	estimated	using	the	
linear	regression	model,	and	then	used	in	the	second	estimator.	In	the	second	estimator,	the	data	
of	similar	transformers	are	averaged,	and	the	final	approximation	data	( ෨ܺ௭)	are	calculated	and	
compared	with	the	actual	data	(ܺ௭).	This	procedure	was	carried	out	as	follows:	

A.	 The	period	݇	in	which	the	data	are	available	is	determined	and	repeated	for	݇ ൌ 	is	ܭ)	ܭ	݋ݐ	1
number	of	previous	periods	with	available	data);	

B.	 For	 each	 transformer	 	,ݐ transformers	 are	 sorted	 from	1	݋ݐ	ܶ	 (except	 for	 the	 period	݇)	 in	 a	
table	based	on	the	similarity	of	the	data	matrices	(ܶ	is	total	number	of	transformers);	
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C.	 In	each	step,	the	following	tasks	are	repeated	for	ݍ ൌ ‐trans	similar	of	number	the	is	ݍ)	ܳ	݋ݐ	1
formers	and	ܳ	was	determined	50):	
C.1.	ݍ	similar	transformers	are	selected	(e.g.,	if	ݍ ൌ 2,	the	transformer	itself	and	the	most	sim‐

ilar	transformer	to	that	are	selected).	The	average	matrix	is	obtained	by	averaging	over	
similar	arrays.	This	3D	matrix	has	a	dimension	of	ሺܭ െ 1ሻ ∗ 3 ∗ ܶ	(it	consists	of	ܭ െ 1	pe‐
riods	in	the	first	dimension,	3	factors	in	the	second	dimension,	and	ܶ	transformers	in	the	
third	dimension).	

C.2.	Using	the	average	matrix	of	the	previous	step,	the	data	for	the	period	݇	are	estimated	by	a	
linear	regression	model;	

C.3.	Using	a	multivariable	linear	regression	model	for	each	factor,	a	linear	set	of	equations	are	
formed	based	on	 the	other	estimated	 factors	 in	section	C.2,	and	 the	data	 for	 the	 trans‐
former	ݐ	are	estimated	in	the	period	݇.	

D.	 The	absolute	differences	of	the	estimated	and	actual	values	are	calculated	for	all	transformer	
factors	in	all	periods,	and	their	summation	is	considered	as	the	model	error.	This	task	is	done	
for	different	values	of	ݍ	similar	transformers,	and	the	error	is	calculated	for	each	ݍ.	For	each	
factor,	the	ݍ	with	the	minimum	error	is	selected	as	the	optimal	number	for	the	model	estima‐
tors.	In	other	words,	using	ݍ	similar	transformers	is	recommended	for	the	best	state	estima‐
tion.	

3.4 Calculating the price of depreciated transformer 

In	 replacing	 transformers,	 the	 price	 of	 depreciated	 transformers	 should	 be	 considered.	 There	
are	10	different	types	of	transformers	with	different	capacities.	To	simplify	the	calculations,	the	
price	of	a	new	25	kVA	transformer	is	considered	one	unit,	and	the	price	of	other	transformers	is	
normalized	to	that.	The	value	of	a	transformer	used	for	݈	years	is	defined	as	follows,	

ܸܶሺ݈ሻ ൌ ଴ܥ ∗ ݁ି௟/ఒ	 (4)

where	ܥ଴	is	the	price	of	a	new	transformer,	ߣ	is	the	depreciation	constant,	and	݈	is	the	age	of	the	
transformer.	ߣ	was	determined	using	fuzzy	logic.	Fuzzy	logic	uses	fuzzy	numbers	instead	of	fixed	
and	definite	ones.	This	study	employed	the	fuzzy	logic	method	introduced	by	[23]	and	well	de‐
scribed	by	[24].	The	output	of	fuzzy	calculations	is	a	table	which	indicates	the	value	of	a	depreci‐
ated	transformer	at	different	ages	compared	to	a	new	transformer.	For	this	purpose,	a	team	of	
KEDC	experts	were	asked	to	determine	a	minimum	and	a	maximum	price	for	transformers	ac‐
cording	to	the	age	of	transformers.	These	data	were	translated	to	fuzzy	numbers,	and	tabulated	
in	a	data	table.	Finally,	Eq.	4	was	fitted	to	this	data	table.	

3.5 Approximate dynamic programming formulation 

After	finding	the	optimal	estimator	model,	the	objective	function	and	the	constraints	should	be	
rewritten	in	the	form	of	the	Rollout	algorithm.	This	is	done	as	follows	(the	total	number	of	trans‐
formers	is	ܶ,	and	each	transformer	and	period	are	represented	with	indices	of	ݐ	and	݇,	respec‐
tively).	

A.	 Using	 the	 estimator	model	 proposed	 in	 the	 previous	 section	 and	 the	 data	 collected	 for	 the	
transformers,	the	factors	for	each	transformer	are	predicted	for	the	next	period.	

B.	 Using	the	estimated	factors	and	Eq.	3,	HI	values	in	each	decision	period	(ܫܪ௞
௧)	are	obtained	for	

all	transformers	in	a	form	of	a	column	matrix	(ܫܪ௞).	By	assembling	this	column	matrices,	a	2D	
matrix	is	formed,	which	shows	the	general	state	of	the	system	when	no	control	is	applied	to	
the	system	(no	transformer	is	replaced	during	the	decision	horizon).	

C.	 ௞ݑ
௧ 	is	a	zero‐one	control	variable	which	indicates	keeping	or	replacement	of	the	transformer	ݐ	
in	the	period	݇;	ݑ௞

௧ ൌ 0	if	a	transformer	is	preserved,	and	ݑ௞
௧ ൌ 1	if	replacement	is	required.	

The	state	variable	in	the	next	period	ݔ௞ାଵ
௧ 	is	obtained	using	the	transformer	HI	as	follows,	

௞ାଵݔ
௧ ൌ ଴ݔ

௧ ∗ ௞ݑ
௧ ൅ ௡௧݌ ሺݔ௞ି௡ାଵ

௧ ‚ ௞ି௡ାଶݔ
௧ ‚ … ‚ ௞ݔ

௧ ሻ ∗ ሺ1 െ ௞ݑ
௧ ሻ	 (5)

Eq.	5	shows	that	if	it	is	decided	to	replace	the	transformer	ݐ,	the	situation	is	the	same	as	the	
initial	condition	of	the	transformer	installation	(this	transformer	will	not	be	replaced	and	its	
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HI	remains	constant	until	the	end	of	the	decision	horizon).	On	the	other	hand,	if	it	is	decided	
to	keep	a	transformer,	the	state	value	is	estimated	using	the	previous	݊	data	states	as	indicat‐
ed	in	the	steps	A	and	B;	݌௡௧ ሺݔ௞ି௡ାଵ

௧ 	௞ି௡ାଶݔ	‚	
௧ ‚ … ௞ݔ	‚

௧ ሻ	presents	this	conditional	value	calculated	
by	the	state	estimator.	

D.	Based	on	 the	 transformer	 state	vector	 for	 each	period,	 the	 costs	of	 operation,	maintenance	
and	repair	of	each	transformer,	and	a	survey	for	transformers,	the	value	of	the	transformer	t	
is	determined	as,	

௞ܭܥ
௧ ൌ 0.15 ∗ ଴ܥ

௧ ∗ ݁଴.଴଺ହ∗൫ଵିሺுூೖ
೟ሻమ൯∗௟ೖ

೟
	 (6)

where	0ܥ௧is	the	price	of	a	new	transformer	similar	to	the	transformer	ݐ,	and	݈௞
௧ 	is	the	age	of	

the	transformer	ݐ	in	the	period	݇.	
E.	 ௞ܴܥ

௧ 	is	the	costs	of	purchasing	new	transformers	and	the	replacement	operation	in	the	period	
݇.	The	price	of	a	new	transformer	is	priori	known,	and	the	cost	of	the	replacement	operation	
is	estimated	to	be	20	%	of	the	price	of	a	new	transformer.	Moreover,	the	depreciated	trans‐
former	cost	is	subtracted	from	the	replacement	cost.	This	cost	for	each	transformer	ݐ	is	calcu‐
lated	as,	

௞ܴܥ
௧ ൌ 1.2 ∗ ଴ܥ

௧ െ ܸܶሺ݈ሻ	 (7)

where	ܸܶሺ݈ሻ	is	calculated	using	Eq.	4	as	a	function	of	the	transformer	age.	
F.	 The	expected	cost	in	each	period	is	denoted	as	݃௞	and	is	calculated	as	follows,	

݃௞ ൌ෍ܴܥ௞
௧ ൈ ௞ݑ

௧

்

௧ୀଵ

൅෍ܭܥ௞
௧ ൈ ሺ1 െ ௞ݑ

௧ ሻ

்

௧ୀଵ

  (8)

A	constraint	of	the	budget	in	each	period	ܾ௞	is,	

෍ܴ݇ܥ
ݐ ൈ ݇ݑ

ݐ

ܶ

ൌ1ݐ

൑ ܾ݇  (9)

where	ܾ௞	was	determined	to	be	50	in	this	study	for	all	decision	periods.	
G.	 Finally,	the	following	equation	should	be	solved,	

௞ܬ ൌ min	ሺ݃௞ ൅ ௞ାଵ݃ߙ ൅ ଶ݃௞ାଶߙ ൅ ⋯൅ 	௡݃௞ାேሻߙ (10)

where	ߙ	is	the	discount	rate	which	is	between	zero	and	one	(in	this	study	considered	to	be	1)	
and	ܰ	is	the	number	of	decision	horizon	periods	(here	ܰ ൌ 4).	At	each	decision‐making	step,	
only	 transformers	with	a	minimum	age	of	ܰ ൅ 1	are	examined	 for	possible	 replacement	 as	
follows,	

෍݇ݑ
ݐ

ܰ

݇ൌ1

൑ 1  (11)

	 Eqs.	5,	8,	9,	and	10	are	general	equations,	which	can	be	used	for	any	kind	of	ER	problem.	Only	
Eq.	6	and	Eq.	7	are	specific	to	this	study,	and	the	should	be	defined	for	other	types	of	ER	prob‐
lems.	The	Eq.	11	may	exist	or	be	omitted	related	to	ER	conditions.	

3.6 Solving the objective problem using genetic algorithm (GA) 

A	GA	method	has	been	employed	to	solve	the	problem,	which	consists	of	the	following	steps:	

A.	 Generating	 control	matrices	 consisting	 of	 “random	 zero	 and	 one”	 elements	 (497∗5	 in	 this	
study)	as	initial	population	(here	8	samples):	
A.1.	Constructing	the	matrix	with	random	zero	and	one	arrays;	
A.2.	Making	each	population	feasible	by	applying	random	changes	 in	matrix	elements	to	 in‐

clude	the	constraints;	
A.3.	Local	optimization	of	the	population	using	the	random	greedy	algorithm;	
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B.	 Generate	the	secondary	population	using	GA	according	to	the	following	steps:	
B.1.	Initial	composition	and	formation	of	several	new	matrices	that	are	not	necessarily	feasi‐

ble	and	optimal;	
B.2.	Making	new	matrices	feasible;	
B.3.	Local	optimization	of	the	population;	
B.4.	Selecting	better	samples	according	to	the	best	sample	in	the	previous	step;	
B.5.	Repeating	step	B.1	to	B.4	until	a	desired	answer	is	obtained.	

4. Results 

Fuzzy	 AHP	method	was	 used	 to	 find	 the	weights	 of	 the	 three	 factors.	 First,	 the	 experts	were	
asked	to	fill	in	a	standard	questionnaire	to	determine	the	priority	of	the	factors,	and	then	fuzzy	
numbers	 and	 the	 inconsistency	 rate	were	determined	 for	 each	questionnaire.	The	weights	 for	
temperature	difference,	oil	condition,	and	maximum	load	were	obtained	as	0.53,	0.27,	and	0.19,	
respectively.	
	 The	data	matrix	for	each	transformer	was	defined	as	a	matrix	ܣ ൌ ሾܽ௜௝ሿ		(݅ ൌ 1	to	6	shows	the	
period	of	the	data,	and	݆ ൌ 1	to	3	presents	the	three	HI	factors).	For	two	transformers,	the	data	
difference	index	is	defined	as	the	sum	of	squared	differences	of	elements	(the	difference	index	of	
any	transformer	relative	to	itself	is	zero).	For	a	transformer	ܣ,	the	data	difference	indices	rela‐
tive	to	all	other	transformers	were	calculated,	and	transformers	were	sorted	from	the	minimum	
difference	index	to	the	maximum	index.	
	 Next,	for	each	factor,	the	number	of	similar	transformers	required	to	obtain	the	best	predic‐
tion	for	that	factor	was	found.	These	numbers	for	three	variables	of	maximum	load,	temperature	
difference,	and	oil	condition	were	obtained	as	11,	32	and	12,	respectively	as	in	shown	in	Fig.	3.	
This	means	that	for	the	best	prediction	of	the	maximum	load,	the	data	of	11	similar	transformers	
(including	itself)	are	required.	Using	the	proposed	estimator,	the	values	of	these	three	factors	for	
the	coming	years	(from	2019	to	2023	in	this	study)	were	predicted.	Having	the	weights	of	the	
factors	and	the	estimated	values	for	the	HI	factors,	the	state	of	the	system	(transformers	HI)	was	
estimated	assuming	no	transformer	replacement	is	done	during	the	decision	period.	

A	 fuzzy	 logic	was	employed	 to	evaluate	 the	value	of	 in‐use	 transformers.	The	experts	were	
asked	to	determine	a	minimum	and	a	maximum	value	for	transformers	over	different	operating	
years.	These	values	were	converted	to	 fuzzy	numbers.	Next,	 fuzzy	numbers	were	converted	to	
crisp	values.	Table	1	summarizes	the	results	of	the	survey	carried	out.	

	
Fig.	3	Approximation	error	for	each	health	index	factor	
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Table	1	Summary	of	the	survey	on	evaluation	of	transformer	price	over	its	operation	lifetime	

Transformer	age	
Minimum	 Maximum

Value	(per	unit)
Lower	(%)	 Geo_Mean	(%) Upper	(%) Lower	(%) Geo_Mean	(%) Upper	(%)	

After	10	years	 60 67 80 70 84 90	 0.751
After	20	years	 30	 40 50 50 58 70	 0.5
After	30	years	 20	 23 40 30 42 50	 0.342
After	40	years	 10	 10 10 20 28 40	 0.19
	

	
Fig.	4	Fitting	a	decreasing	exponential	function	to	the	value	of	an	in‐use	transformer		

	
These	values	are	normalized	to	the	price	of	a	new	transformer,	and	plotted	as	a	function	of	

the	transformer	age	in	Fig.	4.	An	exponential	function	according	to	Eq.	4	was	fitted	to	these	data,	
and	the	depreciation	factor	ߣ	was	found	to	be	27.9663.	 	

The	decision	matrix	 of	 this	 study	has	dimensions	of	 497	 ∗	5	 entries	 (the	number	of	 trans‐
formers	and	periods	are	497	and	5,	respectively).	The	elements	of	this	matrix	are	zero	or	one,	
which	represent	preserving	(0)	or	replacement	 (1)	decision	 for	a	 transformer	 in	a	period.	For	
example,	if	it	is	decided	to	replace	the	transformer	25	in	the	period	3,	the	element	(25,	3)	is	one;	
otherwise,	 it	would	be	zero.	A	constraint	of	 the	problem	is	 that	a	 transformer	can	be	replaced	
only	one	time	in	the	decision	horizon	(5	periods).	Regarding	this	constraint,	the	decision	matrix	
can	have	6ସଽ଻ ≅ 5.51 ∗ 10ଷ଼଺	different	states,	which	indicates	that	the	problem	is	NP‐hard.	
	 The	primary	decision	matrix	is	a	zero	matrix,	which	means	that	the	transformer	states	do	not	
change,	and	the	replacement	cost	is	zero.	According	to	the	problem	data,	the	total	cost	of	a	peri‐
od	without	any	replacement	 is	3696	units.	The	equivalent	state	matrix	was	 first	estimated	ac‐
cording	to	the	control	matrix	in	each	period,	and	then	the	total	cost	was	calculated.	The	objective	
of	the	problem	is	to	minimize	this	total	cost.	A	GA	algorithm	with	8	population	samples	and	12	
iterations	of	genetics	was	 implemented;	 the	 total	cost	was	observed	to	decrease	 from	3696	to	
3134	units.	Table	2	lists	the	output	decisions	and	the	estimated	costs	obtained	by	the	proposed	
method.	As	mentioned	earlier,	only	the	decision	for	the	current	period	(2019)	is	considered	and	
the	rest	are	neglected.	For	the	next	years,	this	method	can	be	repeated	using	the	updated	data.	
	

Table	2	Selected	transformers	for	replacement	in	different	periods	of	decision‐making	
Year	 Proposed	transformers	to	be	replaced	 Replacement	cost	 Maintenance	cost	 Period	cost	

2019	
9,	101,	102,	130,	160,	209,	211,	212,	225,	273,	310,	316,	

319,	366,	444,	and	493	
49.89	 586.96	 636.85	

2020	
10,	21,	70,	150,	156,	166,	169,	181,	213,	277,	311,	326,	

347,	409,	459,	and	497	
49.35	 576.90	 626.25	

2021	
68,	105,	122,	152,	159,	175,	224,	240,	242,	244,	261,	

279,	293,	304,	307,	318,	337,	and	486	
49.56	 569.59	 619.16	

2022	
2,	28,	36,	106,	108,	123,	125,	131,	182,	184,	195,	233,	

276,	305,	400,	419,	and	420	
50.00	 576.53	 626.53	

2023	
23,	64,	90,	94,	154,	176,	200,	232,	259,	268,	303,	325,	

327,	341,	354,	454,	and	491	
40.70	 584.45	 625.15	

Total	cost	in	decision	horizon	 239.50	 2894.44	 3133.94	
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5. Discussion 

Previous	studies	generally	solve	ER	problems	by	simplifying	the	model	and	assuming	many	pa‐
rameters	to	be	constant.	Many	of	these	methods	consider	the	problem	situation	to	be	unchanged	
or	to	have	slight	changes.	In	real	situations,	however,	existing	data	of	a	problem	are	limited	and	
non‐deterministic,	and	factors	such	as	human	and	instrumental	errors	cause	uncertainty	in	sys‐
tem	observations.	Thus,	models	must	move	towards	considering	more	and	more	uncertainties.	
Fan	et	al.	 [25]	classified	three	distinct	approaches	for	equipment	replacement	problems:	mini‐
mum	 equivalent	 annual	 cost,	 experience/rule	 based,	 and	 dynamic	 programming	 approaches.	
They	discussed	that	the	main	drawbacks	of	the	first	two	approaches	are	the	assumption	of	sta‐
tionary	in	the	first	one	and	the	dependence	on	experience	and	judgment	of	experts.	They	main‐
tained	 that	 uncertainties	 should	 be	mixed	with	 Dynamic	 Programming,	 and	 then	 a	 stochastic	
dynamic	 programming	 approach	 is	 used	 for	 Equipment	 Replacement	 problems	which	 can	 be	
classified	in	the	Markovian	decision	process.	Their	approach	is	not	suitable	when	the	state	space	
includes	 several	 variables,	 or	 there	 are	 constraints	 or	 a	 huge	 amount	 of	 nonlinearity	 due	 to	
computational	constraints.	Available	models	for	ER	problems	become	unsuitable	when	the	prob‐
lem	size	increases.	The	new	approach	proposed	in	this	study	is	able	to	handle	large	constrained	
problems	with	several	state	and	decision	variables	and	nonlinear	functions.	
	 By	applying	a	few	modifications	to	the	ADP	model,	 it	can	be	employed	for	other	production	
management	 problems	 such	 as	 location,	 allocation,	 inventory,	 assembly	 line.	 For	 example,	 in	
constrained	queuing	 theory	problems,	 this	 approach	 can	be	 used	 for	 the	 current	period	plan‐
ning;	 the	objective	 function	 is	defined	as	 the	sum	of	penalties	 functions	and	optimized	 for	 the	
next	planning	periods.	The	first	period	results	are	considered	for	decision	making,	and	the	pro‐
cess	is	repeated	for	the	next	periods.	
	 The	 interdependence	of	 the	state	variables	was	examined	 in	 this	study,	but	no	relationship	
between	these	factors	was	found.	This	makes	the	model	used	more	reliable,	because	many	other	
hidden	factors,	which	were	difficult	to	measure	or	not	considered,	have	already	affected	the	data	
of	these	three	state	variables.	Because	of	the	clustering	of	transformers	data	and	considering	the	
Effect	Sparsity,	these	three	chosen	factors	appropriately	represent	other	hidden	factors	not	in‐
cluded	in	this	study.	
	 An	important	aspect	in	Rolling	Horizon	is	the	number	of	decision‐making	periods.	Consider‐
ing	a	large	number	increases	the	data	forecast	error.	On	the	other	hand,	if	a	small	number	is	tak‐
en	into	account,	the	replacement	costs	are	minimized	in	the	last	stages	of	the	forecast	process,	
since	the	costs	of	replacement	are	higher	than	those	of	maintenance,	and	the	costs	even	may	not	
approach	the	budget	constraints.	In	this	study,	five	periods	(including	current	period)	were	con‐
sidered.		
	 An	outcome	of	 this	 study	 is	 the	prediction	of	 the	 transformers	 conditions	 in	 coming	years,	
which	provides	very	useful	information	for	the	KEDC	experts.	This	prediction	can	be	considered	
as	 a	Decision	 Support	 System.	 For	 example,	 for	 transformers	which	 have	 been	 in	 use	 for	 less	
than	20	years	and	were	on	the	 list	of	possible	substitution	 in	the	next	years,	a	special	mainte‐
nance	program	was	set	up	to	fix	their	deficiencies	before	it	becomes	necessary	to	replace	them.	
This	supports	the	use	of	the	Rollout	algorithm,	which	only	takes	the	output	of	the	first	period.	

6. Conclusion 

In	order	to	model	ER	problems	with	uncertainty,	Only	a	few	limited	approaches	such	as	Stochas‐
tic	Dynamic	 Programming	 are	 available	 in	 literature,	which	 cannot	 be	 employed	 for	 real	 case	
problems	due	 to	 “curse	 of	 dimensionality”.	 Previous	models	 cannot	 deal	with	 constraints	 and	
nonlinearities	when	the	volume	of	a	problem	expands.	In	the	current	study,	a	new	ADP	approach	
was	developed	 for	 large‐scale	nonlinear	constrained	problems.	The	proposed	approach	can	be	
applied	for	a	wide	range	of	production	management	and	operations	research	problems. 
	 Accurate	and	well‐timed	decisions	on	maintenance	or	replacement	of	equipment	reduces	the	
costs	significantly.	The	mentioned	ADP	model	was	used	to	solve	a	real	transformer	replacement	
problem.	 The	 objective	 was	 to	make	 an	 optimal	 decision	 considering	 constraints,	 and	 conse‐
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quently achieve the highest reduction in the expected costs.  The parameters measured for 
transformers were used to define the state space; then by proposing a heuristic estimator, these 
parameters were predicted in the decision horizon. The objective function was defined as the 
maintenance and replacement costs, and optimized using GA. These costs were determined ac-
cording to the available data and conducting surveys. General formulation for the ER problem of 
this study can be used for other situations such as assembly line, workshop machineries, fleet 
management. 
 The model presented has unique features. First, it employs realistic functions which were 
obtained based on the opinion of some experts in electricity industry. The second feature is its 
robustness in dealing with data associated with uncertainties and errors caused by human, in-
strumental, and environmental factors. The state estimation algorithm minimizes the effect of 
possible inaccuracies in data, and can be applied for a wide range of problems with a few num-
ber of sampled periods and large number of samples. The third feature is the consideration of 
several active factors that affect the problem and some other latent factors, as well as possible 
interdependency of these factors. The fourth feature is the ability of the model to deal with non-
linear and even zero-one constraints and functions, and meanwhile preserve a high solution 
speed (which is a trait of the ADP method). 
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