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A B S T R A C T	   A R T I C L E   I N F O	

This	 paper	 integrates	 the	 processing	 scheduling	 with	 assembly	 scheduling,	
aiming	to	satisfy	the	requirements	for	just‐in‐time	(JIT)	production.	Consider‐
ing	the	uncertainty	of	time	factors	in	actual	production,	the	operation	time	of	
the	jobs	were	represented	as	triangular	fuzzy	numbers	and	the	delivery	time	
of	 the	 final	 product	 as	 trapezoidal	 fuzzy	 numbers.	 An	 extended	 job‐shop	
scheduling	 problem	 (JSP)	 considering	 above	 factors	 was	 proposed	 in	 this	
paper.	 A	mathematical	model	was	 established	 for	 processing	 and	 assembly	
scheduling,	aiming	to	achieve	the	mean	satisfaction	degree	on	delivery	time.	
In	 light	 of	 the	 complexity	 of	 the	 problem,	 a	 genetic	 algorithm	 (GA)	was	 de‐
signed	to	realize	the	 fuzzy	 integrated	optimization	of	processing	and	assem‐
bly	under	uncertainty.	The	proposed	algorithm	includes	selection,	crossover,	
mutation	operations,	 and	 reflects	 the	 spirits	 of	 two‐section	real	number	en‐
coding	 and	 elite	 protection	 strategy.	 Each	 part	 of	 the	 GA	 was	 designed	 in	
detail.	Finally,	the	proposed	model	and	algorithm	were	verified	through	a	case	
study	on	processing	and	assembly	scheduling.	The	model	enjoys	high	practi‐
cal	 value	 by	 taking	 the	 customer	 satisfaction	 of	 the	 delivery	 period	 as	 the	
main	goal.	The	results	 show	 that	our	 scheduling	 strategy	mirrors	 the	actual	
production	situation	and	provides	a	good	reference	for	JSP	scheduling	under	
multiple	uncertainties.	The	best	solution	obtained	by	our	model	is	more	feasi‐
ble	than	basic	JSP	in	real	production	environment.	
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1. Introduction 

Job‐shop	scheduling	problem	(JSP)	is	a	much‐concerned	NP‐hard	problem	in	the	field	of	combi‐
natorial	optimization	[1].	The	basic	JSP	aims	to	minimize	the	makespan	of	several	jobs	under	the	
following	constraints:	within	each	job	there	is	a	set	of	operations	which	need	to	be	processed	in	
a	specific	order;	Each	operation	has	a	specific	machine	that	 it	needs	to	be	processed	on	[2,	3].	
Compared	with	single‐machine	scheduling	and	flow	job	scheduling,	 the	JSP	can	satisfy	the	growing	
demand	for	customized	products	and	the	increasingly	diversified,	small‐batch	production	mode.	

Nevertheless,	the	basic	JSP,	taking	the	minimal	makespan	as	the	goal,	still	deviates	from	the	
actual	production	situation,	in	that	it	fails	to	consider	the	close	correlation	between	the	produc‐
tion	plan	and	assembly	plan	or	take	account	of	the	delivery	time.	The	production	plan	focuses	on	
machine	control	and	job‐shop	scheduling,	while	the	assembly	plan	optimizes	the	production	line	
resources.	The	delivery	time	is	the	key	to	just‐in‐time	production	and	an	important	influencing	
factor	of	scheduling	effect.	A	proper	delivery	time	helps	to	rationalize	production	planning	and	
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scheduling,	enabling	the	manufacturer	to	respond	to	market	changes	quickly	at	a	low	production	
cost.	

Considering	the	effect	of	uncertainty	factors	on	the	scheduling	results,	this	paper	introduces	
several	fuzzy	parameters,	namely	fuzzy	operation	time,	fuzzy	assembly	time	and	fuzzy	delivery	
time,	into	the	basic	JSP,	and	attempts	to	realize	integrated	scheduling	of	processing	and	assem‐
bly	with	uncertain	factors.	

2. Literature review 

Over	the	years,	much	research	has	been	done	on	the	JSP,	yielding	fruitful	results.	Below	is	a	brief	
review	of	the	related	studies	in	recent	years.	

On	algorithm	improvement,	Nirmala	Sharma	et	al.	[2]	designed	an	improved	bee	colony	algo‐
rithm	(BCA),	and	verified	its	superiority	by	a	number	of	standard	examples.	Piroozfard	et	al.	[4]	
proposed	an	 improved	biogeographic	optimization	algorithm,	 and	 tested	 that	 it	 outperformed	
traditional	algorithms	like	greedy	randomized	adaptive	search	procedure	(GRASP),	phase	gradi‐
ent	autofocus	(PGA)	and	hierarchical	genetic	algorithm	(HGA).	Akram	et	al.	[5]	developed	a	fast	
simulated	annealing	(SA)	algorithm	for	the	basic	JSP,	which	can	avoid	the	local	optimum	trap.	An	
improved	cuckoo	search	algorithm	(CSA)	was	proposed	for	solving	JSP	by	Hu	et	al.	[6].	Modrák	
et	al.	[7]	proposed	a	novel	genetic	algorithm	within	heuristics	for	solving	flow	shop	scheduling	
problem.	

Considering	the	diverse	job	types	and	processing	routes	in	actual	production,	some	scholars	
have	incorporated	multiple	processing	routes	into	the	basic	JSP,	forming	the	flexible	JSP	(FJSP).	
For	instance,	Lin	[8]	derived	a	super	heuristic	algorithm	based	on	backtracking	algorithm,	and	
used	it	to	simulate	the	FJSP	with	fuzzy	operation	time.	Shen	et	al.	[9]	described	an	improved	tabu	
search	algorithm	that	adjusts	 the	operation	 time	 in	FJSP	according	 to	 the	operation	 sequence.	
Kato	et	al.	[10]	combined	hill	climbing	and	particle	swarm	optimization	(PSO)	into	a	hybrid	algo‐
rithm,	and	verified	the	effectiveness	of	this	algorithm	using	standard	examples.	Wu	[11]	gener‐
ated	 a	 new	mathematical	model	 through	 a	 non‐dominated	 sorting	 genetic	 algorithm	 (NSGA),	
aiming	to	minimize	the	makespan	and	energy	consumption	of	 the	FJSP	by	heuristic	 rules	X.	P.	
Yang	et	al.	[12]proposed	an	dynamic	multi‐objective	FJSP	and	design	a	parallel	hybrid	algorithm.	
A	model	for	FJSP	involving	low	carbon	factor	was	established	by	Seng	et	al.	 [13].	An	 improved	
NSGA‐II	was	proposed	to	solve	the	problem.	Nidhiry	et	al.	[14]	proposed	a	modified	NSGA‐II	for	
solving	a	multi‐objective	FJSP.	Xu	et	al.	[15]	proposed	a	bat	algorithm	for	solving	a	dual	FJSP.	

In	addition,	many	scholars	have	introduced	practical	factors	into	the	JSP	to	improve	the	ap‐
plicability	of	the	problem	in	actual	production.	For	example,	Nagata	et	al.	[1]	established	a	math‐
ematical	 model	 with	 the	 goal	 of	 minimizing	 the	 makespan,	 and	 propounded	 a	 dynamic	 pro‐
gramming	algorithm	that	adds	the	bottleneck	process	 to	 the	basic	 JSP.	Bierwirth	et	al.	 [3]	 ten‐
dered	an	extended	GRASP	algorithm	to	minimize	the	total	delay.	Yazdani	et	al.	[16]	de‐signed	an	
improved	 competition	 algorithm	and	 relied	 on	 it	 to	 construct	 a	 JSP	model	 that	minimizes	 the	
advance/tardiness	penalty	of	delivery	time.	Chaouch	et	al.	[17]	solved	cross‐plant	transportation	
JSP	by	an	improved	ant	colony	algorithm	(ACA).	Kurdi	et	al.	[18]	proposed	an	improved	cultural	
genetic	algorithm	to	minimize	the	makespan,	total	tardiness	penalty	and	total	advance	penalty	
of	 the	 JSP.	Shahrabi	et	al.	 [19]	delineated	 the	 JSP	with	 job	 insertion	and	machine	 failure.	Kun‐
dakci	[20]	explored	the	JSP	with	random	insertion,	ma‐chine	failure	and	variable	working	hours.	
Kuhpfahl	et	al.	[21]	illustrated	an	improved	local	search	algorithm	and	utilized	its	model	to	min‐
imize	the	total	tardiness	penalty	in	the	JSP	problem	with	a	specified	delivery	date.	Zhong	et	al.	
[22]	considered	manpower	and	machine	into	basic	JSP.	A	model	for	two‐resource	JSP	was	estab‐
lished.	 A	 branch	 population	 genetic	 algorithm	 was	 designed	 for	 solving	 the	 problem.	 A	 lean	
scheduling	problem	in	job	shop	environment	were	studied	by	Haider	et	al.	[23].	Chaudhry	et	al.	
[24]	proposed	an	integrated	scheduling	problem	within	process	planning	and	designed	a	genetic	
algorithm.	Besides,	there	exist	many	uncertain	factors	in	manufacturing	[6],	economic	[25,	26],	
environment	[27]	and	so	on.	

To	 sum	 up,	more	 and	more	 production	 factors	 have	 been	 introduced	 to	 the	 JSP,	 including	
multiple	processing	routes,	delivery	time,	bottleneck	process	and	machine	failure,	with	the	aim	
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to	make	the	 JSP	more	 in	 line	with	the	actual	production	situation.	The	actual	production	 is	af‐
fected	 by	 various	 random	 factors,	making	 it	 hard	 to	 obtain	 the	 exact	 operation	 and	 assembly	
time	 of	 each	 job.	Due	 to	 the	 fuzziness	 in	 the	 operation	 and	 assembly	 time,	 the	makespan	 be‐
comes	uncertain	and	the	delivery	time	may	fluctuate.	

In	 light	 of	 the	 above,	 this	 paper	 takes	 account	 of	 uncertain	 time	 factors	 in	 the	 integrated	
scheduling	of	processing	and	assembly.	These	 factors	were	expressed	as	 fuzzy	numbers.	Next,	
the	JSP	was	modelled	with	the	goal	to	satisfy	the	delivery	time,	and	solved	by	a	genetic	algorithm	
(GA).	Finally,	the	model	and	the	algorithm	were	verified	through	a	case	study.	

3. Problem description 

Our	research	problem	is	about	the	integrated	scheduling	of	processing	and	assembly,	consider‐
ing	the	uncertainties	in	the	operation	time	of	each	job	on	each	machine	in	the	production	line,	
the	 assembly	 time	 in	 the	 assembly	 machines	 and	 the	 delivery	 time	 of	 the	 final	 product.	 The	
mathematical	description	of	the	problem	is	as	follows.	

Let	n	be	the	number	of	jobs	in	the	final	product,	each	of	which	has	a	unique	processing	route,	
p	be	the	number	of	processing	machines,	and	m	be	the	number	of	assembly	machines.	It	 is	as‐
sumed	that	each	processing	or	assembly	operation	corresponds	to	one	machine	only.	The	start	
and	finish	time	of	the	processing	machines	and	assembly	operation	were	expressed	as	triangular	
fuzzy	numbers,	while	the	delivery	time	was	depicted	by	a	semi‐trapezoidal	fuzzy	number.	Then,	
the	processing	and	assembly	operations	of	job	were	sorted	to	determine	the	sequence	that	best	
suits	the	delivery	time.	The	following	symbols	were	defined	to	establish	a	fuzzy	scheduling	mod‐
el	for	the	integrated	scheduling.	

n	 The	number	of	jobs	in	the	final	product
ℓ௜		 The	serial	number	of	job	i	
m	 The	number	of	assembly	machines
p	 The	number	of	processing	machines
qi	 The	number	of	processing	operations	for	type i jobs
M	 A	random	large	positive	integer
		෨ெሺ௜,௞ሻܧ Makespan	of	job	i	on	processing	machine	k
		෨஺ሺ௝ሻܧ Makespan	of	assembly	machine j
Oijk	 A	Boolean	variable	indicating	whether	the	 j‐th	operation	of	 job	 i	 is	processed	on	ma‐

chine	k;	if	yes,	the	value	of	the	variable	is	one;	otherwise,	the	value	is	zero.	
Ci	 The	assembly	time	of	job	i	on	an	assembly	machine
෨ܶெሺ௜,௞ሻ		 The	operation	time	of	job	i	on	processing	machine	k
෨ܶ஺ሺ௝ሻ		 The	assembly	time	of	assembly	machine	j
ሚܵெሺ௜,ଵሻ		 The	start	time	of	the	processing	task	of	job	i on	the	first	machine
ሚܵ஺ሺ௝ሻ		 The	start	time	of	assembly	task	on	assembly	machine	j
xihk	 A	Boolean	variable	 indicating	 the	operation	sequence	of	 job	 i on	machine	h	 and	ma‐

chine	k	
yijk	 A	Boolean	variable	indicating	the	operation	sequence	of	jobs	i and	j	on	machine	k
RA(j)		 A	Boolean	variable	indicating	whether	job	i is	required	for	assembly	machine	j	
෨ெሺ௝ାଵሻܧ
௜ 		 The	makespan	of	job	i	required	for	assembly	machine	j+1

෨ெሺ௝ାଵሻܧ
௠௔௫ 		 The	maximum	makespan	of	all	jobs	required	for	assembly	machine	j+1	

4. Model establishment 

The	fuzzy	optimization	model	for	the	minimal	total	makespan	of	product	assembly	can	be	estab‐
lished	as:	

෨ܼ ൌ ݉݅݊ሼ݉ܽݔ ෫ܧ ஺ሺ௝ሻሽ ൌ ݉݅݊ሼ݉ܽݔሺܧ஺ሺ௝ሻ
௅ , ஺ሺ௝ሻܧ

ெ , ஺ሺ௝ሻܧ
௎ ሻሽ	 (1)

The	model	is	subjected	to	the	following	constraints:	
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෨஺ሺ௝ሻܧ ൌ ෨ெሺ௝ሻܧ
௠௔௫ಲሺೕሻ , ሺ݆ ൌ 1)	 (2)

	

෨ܼ ൌ ݉݅݊ሼ݉ܽݔ ෫ܧ ஺ሺ௝ሻሽ ൌ ݉݅݊ሼ݉ܽݔሺܧ஺ሺ௝ሻ
௅ , ஺ሺ௝ሻܧ

ெ , ஺ሺ௝ሻܧ
௎ ሻሽ	 (3)

	

෨ெሺ௜,௞ሻܧ ൌ෍ ௜ܱ௝௞

௤೔

௝ୀଵ

ൈ ෨ܶெሺ௜,௞ሻ ൈ ℓ௜ , ሺ݅ ൌ 1; ݇ ൌ 1ሻ	 (4)

	

෨ெሺ௜,௞ሻܧ ൌ ෨ெሺ௜ିଵ,௞ሻܧ ൅෍ ௜ܱ௝௞

௤೔

௝ୀଵ

ൈ ෨ܶெሺ௜,௞ሻ ൈ ℓ௜ , ሺ݅ ൌ 2,3, … , ݊; ݇ ൌ 1ሻ	 (5)

	

෨ெሺ௜,௞ሻܧ ൌ maxሾܧ෨ெሺ௜ିଵ,௞ሻ, ෨ெሺ௜,௞ିଵሻሿܧ ൅෍ ௜ܱ௝௞

௤೔

௝ୀଵ

ൈ ෨ܶெሺ௜,௞ሻ ൈ ℓ௜ ,	ሺ݅ ൌ 2,3, … , ݊; 	݇ ൌ 2,3, … , 	ሻ݌ (6)

	

෨ெሺ௜,௞ሻܧ െ෍ ௜ܱ௝௞

௤೔

௝ୀଵ

ൈ ෨ܶெሺ௜,௞ሻ ൈ ℓ௜ ൅ ሺ1ܯ െ ௜௛௞ሻݔ ൒ 	෨ெሺ௜,௛ሻܧ (7)

	

෍ ௜ܱ௝௞

௣

௞ୀଵ

ൌ 1，∀݅, ݆	 (8)

	

෍ ௜ܱ௝௞

௤೔

௝ୀଵ

ൌ 1，∀݅, ݇	 (9)

	

෨ெሺ௝,௞ሻܧ െ ෨ெሺ௜,௞ሻܧ ൅ ሺ1ܯ െ ௜௝௞ሻݕ ൒ ෨ܶெሺ௝,௞ሻ	 (10)
	

ሚ௜ܥ ൑ ሺ1 െ ܴ஺ሺ௝ሻሻ ∗ ሚܵ஺ሺ௝ሻ ൅ ܿ,	ሺc	is	a	constantሻ	 (11)
	

ሚܵ஺ሺ௝ାଵሻ ൌ ሾݔܽ݉ ,෨஺ሺ௝ሻܧ ෨ெሺ௝ାଵሻܧ
௠௔௫ ሿ	 (12)

	
෨ெሺ௝ାଵሻܧ
௠௔௫ ൌ max൛ܧ෨ெሺ௝ାଵሻ

ଵ , ෨ெሺ௝ାଵሻܧ
ଶ ൟ , … , ෨ெሺ௝ାଵሻܧ

௡  	 (13)
	

ܴ஺ሺ௜,௝ሻ ൌ ቄ1 Job	݅	is	not	required	at	the	j‐th	assembly	position
0 otherwise

	 (14)
	

௜௛௞ݔ ൌ ቄ1 Job	݅	is	processed on machine ݄ before machine	݇
0 otherwise

		 (15)
	

௜௝௞ݕ ൌ ቄ1 Job	݅	is	processed on machine ݇ before machine ݆.
0 otherwise

		 (16)
	

෨ܶெሺ௜,௞ሻ ൒ 0		 (17)
	

෨ܶ஺ሺ௝ሻ ൒ 0	 (18)
	

ሚܵ஺ሺ௝ሻ ൒ 0	 (19)
	

Eq.	1	 is	the	objective	function	of	the	model:	minimizing	the	final	 fuzzy	assembly	time.	Eq.	2	
shows	the	relationship	between	assembly	makespan	and	processing	makespan.	Eq.	3	specifies	
that	 the	 current	 assembly	 operation	 cannot	 start	 before	 the	 previous	 assembly	 operation	has	
been	 completed.	 Eqs.	 4	 and	5	describe	 the	makespan	of	 a	 job	on	 a	processing	machine.	 Eq.	 6	
specifies	that	the	current	 job	cannot	be	processed	on	the	machine	before	the	previous	 job	has	
processed	and	removed.	Eq.	7	describes	the	processing	sequence	of	 job	 i	on	machines	k	and	h.	
Eq.	8	specifies	that	machine	k	cannot	process	two	processes	at	the	same	time.	Eq.	9	specifies	that	
job	i	cannot	be	processed	on	two	machines	at	the	same	time.	Eq.	10	describes	the	operation	se‐
quence	of	jobs	i	and	j	on	machine	k.	Eq.	11	specifies	that	the	expected	makespan	of	job	i	that	en‐
sures	smooth	assembly	and	minimizes	 the	waiting	 time	before	assembly.	Eq.	12	specifies	 that	
that	assembly	cannot	begin	unless	all	jobs	of	the	final	product	in	the	previous	or	the	next	assem‐
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bly	 task	has	been	completed.	Eq.	13	describes	 the	makespan	of	 the	 jobs	 required	 in	 assembly	
task	 j.	Eq.	14	presents	a	Boolean	variable	that	 indicates	whether	 job	i	 is	required	for	assembly	
task	 j.	Eq.	15	presents	a	Boolean	variable	that	specifies	the	operation	sequence	of	 job	 i	on	ma‐
chines	h	and	k.	Eq.	16	presents	a	Boolean	variable	that	specifies	the	operation	sequence	of	jobs	i	
and	j	on	machine	k.	

5. Fuzzy transformation and fuzzy operation 

5.1 Fuzzy transformation 

Eq.	1	was	transformed	to	convert	the	objective	into	the	mean	delivery	satisfaction.	Let	triangular	
fuzzy	numbers	 ෨ܶெሺ௜,௞ሻሺ ெܶሺ௜,௞ሻ

ଵ , ெܶሺ௜,௞ሻ
ଶ , ெܶሺ௜,௞ሻ

ଷ ሻ	and	 ෨ܶ஺ሺ௝ሻሺ ஺ܶሺ௝ሻ
ଵ , ஺ܶሺ௝ሻ

ଶ , ஺ܶሺ௝ሻ
ଷ ሻ	be	 the	operation	 time	of	

each	processing	machine	and	that	of	each	assembly	machine,	respectively	(Fig.	1).	Then,	the	de‐
livery	time	of	the	final	product	was	described	as	trapezoidal	fuzzy	numbers	(Fig.	2).	The	fuzzi‐
fied	variables	of	operation	time	and	delivery	time	can	accurately	demonstrate	the	effects	of	vari‐
ous	 uncertain	 factors	 on	 the	 production	 process,	 laying	 the	 basis	 for	 a	 flexible,	 adaptive	 and	
practical	scheduling	plan.	
	

  	
Fig.	1	Fuzzy	operation	time	of	each	processing	
machine	and	assembly	machine	

Fig.	2	Fuzzy	delivery	time	of	the	final	product	

	

In	Fig.	1,	 ெܶሺ௜,௞ሻ
ଵ ,	 ெܶሺ௜,௞ሻ

ଶ 	and	 ெܶሺ௜,௞ሻ
ଷ 	are	 the	 lower	bound,	mean	and	upper	bound	of	 the	 fuzzy	

operation	time	of	each	processing	machine;	 ஺ܶሺ௝ሻ
ଵ ,	 ஺ܶሺ௝ሻ

ଶ 	and	 ஺ܶሺ௝ሻ
ଷ 	are	the	lower	bound,	mean	and	

upper	bound	of	the	fuzzy	operation	of	each	assembly	machine.	Fig.	2	explains	if	the	final	product	
is	delivery	within	the	window	[D1,	D2].	If	yes,	the	degree	of	satisfaction	is	expressed	as	1;	other‐
wise,	it	is	expressed	as	a	linear	membership	function.	

Under	 the	 premise	 of	 satisfying	 the	 delivery	 time,	 it	 is	 necessary	 to	 compare	 the	 product	
makespan	with	 the	 fuzzy	makespan	 in	 our	model	 to	 see	 if	 it	 is	 optimal.	 For	 this	 purpose,	 the	
fuzzy	objective	function	can	be	transformed	as:	
	

஺ሺ݅ሻܨaxܯ ൌ ∑߱௜ ஺݂ሺ݅ሻ (20)
	

where	߱௜	is	the	weight	of	the	delivery	time	of	the	assembled	product;	fA(i)	can	be	calculated	as:	
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(21)

5.2 Fuzzy operation 

Our	 scheduling	model	 involves	 the	 following	 fuzzy	 number	 operations:	 addition,	 subtraction,	
maximization	 and	minimization.	 Let	̃ݎ ൌ ሺݎ௟, ,௠ݎ ݐ̃	and	௨ሻݎ ൌ ሺݐ௟, ,௠ݐ 	be	௨ሻݐ two	 fuzzy	 numbers.	
Then,	the	addition	and	maximization	operations	can	be	defined	as:	

ݎ̃ ൅ ݐ̃ ൌ ሺݎ௟ ൅ ,௟ݐ ௠ݎ ൅ ,௠ݐ ௨ݎ ൅ 		௨ሻݐ (22)
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ݎ̃ ∨ ݐ̃ ൌ ሺݎ௟ ∨ ,௟ݐ ௠ݎ ∨ ,௠ݐ ௨ݎ ∨ 		௨ሻݐ (23)
	

The	 addition	 of	 fuzzy	 numbers	 determines	 the	 sequence	 and	makespan	 of	 job	 processing,	
while	 the	maximization	 determines	 the	 start	 time	of	 the	 operation	 on	 a	 job.	Under	 the	 above	
constraints,	the	fuzzy	numbers	in	the	inequalities	can	be	compared	in	the	following	three	steps:	

Step	1:	Compare	the	two	fuzzy	numbers	by	their	c1	values:	
	

ܿଵሺ̃ݎሻ ൌ
௥೗ାଶ௥೘ା௥ೠ

ସ
		 (24)

	

Step	2:	If	the	c1	values	are	equal,	compare	the	two	fuzzy	numbers	by	their	c2	values:	
	

ܿଶሺ̃ݎሻ ൌ ௠ݎ (25)
	

Step	3:	If	the	c2	values	are	equal,	compare	the	two	fuzzy	numbers	by	their	c3	values:	
	

ܿଷሺ̃ݎሻ ൌ ௨ݎ െ 	௟ݎ (26)

5.3 Genetic algorithms 

Based	on	the	description	and	mathematical	model	of	this	extended	JSP,	the	problem	obviously	
belongs	to	NP‐hard.	Genetic	algorithm	(GA)	is	proposed	by	Professor	Holland	of	the	University	
of	Michigan	 in	 the	 1960s.	 So	 far,	GA	has	been	used	 to	 solve	many	 combinatorial	 optimization	
problems.	Due	 to	 the	complexity	of	 the	problem,	a	GA	 is	proposed	 to	solve	 the	problem.	Each	
module	will	be	introduced	as	follows.	

6. Design of the integrated scheduling system based on genetic algorithms (GA) 

This	section	designs	a	GA	to	solve	our	model	under	the	time	constraints	on	processing	and	as‐
sembly,	owing	to	the	computing	complexity	and	constraint	diversity.	With	the	aim	to	satisfy	the	
delivery	 time,	 the	 scheduling	 plan	 that	 best	 satisfies	 the	 delivery	 time	 under	 fuzzy	 operation	
time	was	considered	as	the	optimal	plan.	

6.1 Encoding operation 

The	encoding	was	carried	out	 in	 the	real‐coded	mode,	 in	which	each	gene	 in	 the	chromosome	
indicates	a	processing	operation.	The	genes	were	represented	by	the	serial	number	of	jobs.	For	
example,	 each	 chromosome	 has	 n×m	 genes.	 If	 a	 job	 appears	m	 times	 in	 the	 chromosome,	 it	
means	the	job	needs	to	undergo	m	assembly	operations.	The	processing	sequence	of	a	job	was	
described	by	its	order	in	the	chromosome.	Taking	the	five‐operation	chromosome	[2	3	2	2	1	4	2	
3	4	1	4	5	5	5	1	3	2	5	1	5	1	4	4	3	3]	for	instance,	the	processing	should	start	with	the	first	opera‐
tion	of	the	second	job,	followed	by	the	first	operation	of	the	third	job.	The	rest	can	be	deduced	by	
analogy.	The	process‐based	encoding	approach	differs	 from	the	traditional	strategies	 in	 that	 it	
considers	the	order	between	processing	and	assembly	operations	and	thus	ensures	the	validity	
of	the	chromosomes.	

6.2 Fitness function 

The	fitness	f(i)	of	chromosome	i	can	be	calculated	as:	
	

݂ሺ݅ሻ ൌ ܼ ൌ ݉݅݊ሼ݉ܽݔ ெሺ௜,௞ሻܧ ൅ ߙ ൈ෍݉ܽݔሾ ሺܥ௜ െ ெሺ௜ሻሻ,0ሿܧ

௡

௜ୀଵ
൅ ݔܽ݉ ∑஺ሺ௝ሻାఉൈܧ ௠௔௫ሾሺௌಲሺೕశభሻିாಲሺೕሻሻ,଴ሿ

೘
ೕసభ ሽ	

(27)

	

The	advance/tardiness	penalty	coefficients	for	jobs	were	set	as	α=1.2	and	β=1.25,	respectively.	

6.3 Selection operation 

Through	 steady‐state	 replication,	 the	most	 adaptive	 individuals	were	directly	 selected	 for	 the	
next	 generation,	 reflecting	 the	 spirit	 of	 the	elite	protection	 strategy,	while	 the	 remaining	 indi‐
viduals	were	 selected	 for	 crossover	 and	mutation	 at	 different	 probabilities.	 This	 selection	 ap‐
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proach	 ensures	 the	 robustness	 of	 the	 next	 iteration.	 The	 selection	probability	PS(i)	 of	 chromo‐
some	i	can	be	expressed	as:	

ௌܲሺ௜ሻ ൌ ݂ሺ݅ሻ/∑ ݂ሺ݇ሻ௨
௞ୀଵ 		 (28)

	

where	f(i)	is	the	fitness	of	chromosome	i.	

6.4 Crossover operation 

The	general	position	intersection‐based	crossover	was	improved	to	ensure	the	feasibility	of	ma‐
chines	in	the	child	chromosome.	Based	on	the	position	intersections	of	the	jobs,	the	serial	num‐
ber	of	a	job	was	randomly	determined	and	retained	in	a	different	parent	chromosome	from	hat	
of	the	job	position.	Then,	the	vacant	positions	were	filled	by	the	remaining	genes	of	another	par‐
ent	chromosome,	forming	a	new	child	chromosome.	For	the	two	parent	chromosomes	P1={2	3	2	
2	1	4	2	3	4	1	4	5	5	5	1	3	2	5	1	5	1	4	4	3	3}	and	P2={5	2	1	4	3	2	4	3	2	1	5	5	4	3	1	5	1	1	4	5	3	2	4	2	3},	
the	crossover	was	performed	based	on	the	intersection	of	job	positions,	producing	a	child	chro‐
mosome	shown	in	Fig.	3	below.	
	

	
Fig.	3	Single‐point	crossover	

6.5 Mutation operation 

Because	of	the	sequence	constraints	on	jobs	and	machines,	the	assembly	after	the	crossover	and	
mutation	may	 take	place	 before	 the	 processing,	 resulting	 in	 an	 unfeasible	 solution.	 Thus,	 it	 is	
necessary	to	determine	a	solution	is	feasible	through	the	following	steps.	

Step	1:	 Traverse	all	positions	of	a	chromosome	and	find	the	job	number	of	the	previous	assem‐
bly	task.	

Step	2:	 Determine	if	the	job	number	is	at	the	last	position	of	the	chromosome;	if	not,	swap	the	
job	with	the	last	job;	otherwise,	go	to	Step	3.	

Step	3:	 Find	the	job	number	in	the	second	to	last	position	and	record	the	current	position	P	of	
this	job	number.	

Step	4:	 Determine	whether	the	job	required	for	the	assembly	position	has	been	completed	be‐
fore	position	P;	if	yes,	terminate	the	determination	process;	otherwise,	go	to	Step	5.	

Step	5:	 Change	the	positions	of	all	jobs	that	do	not	satisfy	the	sequence	constraints	until	all	the	
jobs	are	processed	before	the	assembly	operations.	

According	to	the	main	parameters	designed	above,	the	GA	to	solve	our	integrated	scheduling	
model	 for	processing	 and	 assembly	was	developed	based	on	 single‐point	 crossover	 and	 swap	
mutation.	The	flow	chart	of	the	algorithm	is	shown	in	Fig.	4.	

As	shown	in	Fig.	4,	the	proposed	GA	is	implemented	in	the	following	steps.	

Step	1:	 Initialize	parameters	 like	 the	population	size	 (an	even	number),	 the	number	of	 itera‐
tions	gen,	the	crossover	probability	Pc	and	the	mutation	probability	Pm.	

Step	2:	 Produce	the	initial	population.	
Step	3:	 Initialize	the	counter	as	݊ ൌ 0.	
Step	4:	 Calculate	fitness	݂ሺ݅ሻ	of	each	individual.	
Step	5:	 Find	the	individuals	ܾ݁ݐݏ_݂݈ܽ݃	with	the	best	fitness	݂ሺ݅ሻ	and	directly	import	them	into	

the	next	generation.	
Step	6:	 Determine	whether	the	ܾ݁ݐݏ_݂݈ܽ݃	in	the	next	generation	is	ܰ;	if	yes,	go	to	Step	22;	oth‐

erwise,	go	to	Step	7.	
Step	7:	 Calculate	the	selection	probability	of	each	remaining	individual.	
Step	8:	 Generate	 a	 random	 selection	 probability	ܲ ∈ ሾ0, 1ሿ,	 and	 perform	 roulette	 selection	

ሺܰ െ 	.pool	mating	the	in	individuals	the	of	ሻ݈݂݃ܽ_ݐݏܾ݁
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Fig.	4	Flow	chart	of	the	GA	for	solving	our	model	

	
Step	9:	 Initialize	the	counter	as	݉ ൌ 0.	
Step	10:	 Determine	the	number	of	intersections	k	according	to	the	number	of	optimal	individu‐

als,	and	randomly	generate	the	crossover	probability	݀ݎ ∈ ሾ0, 1ሿ.	If	݀ݎ ൏ ܲܿ,	go	to	Step	
11;	otherwise,	regard	the	individuals	as	temporary	ones	and	go	to	Step	13.	

Step	11:	 Perform	crossover	of	two	parent	chromosomes.	
Step	12:	 Record	the	two	generations	after	the	crossover.	
Step	13:	 Generate	a	random	mutation	probability	as	݉ݐ ∈ ሾ0, 1ሿ.	
Step	14:	 If	݉ݐ ൏ ܲ݉,	go	to	Step	15;	otherwise,	go	to	Step	16.	
Step	15:	 Perform	mutation	of	one	of	the	temporary	individuals.	
Step	16:	 Let	݉ ൌ ݉ ൅ 1.	
Step	17:	 Generate	another	mutation	probability	as	݉ݐ ∈ ሾ0, 1ሿ.	
Step	18:	 If	݉ݐ ൏ ܲ݉,	go	to	Step	15;	otherwise,	go	to	Step	19.	
Step	19:	 Perform	mutation	of	another	temporary	individual.	
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Step	20:	 Let	݉ ൌ ݉ ൅ 1.	
Step	21:	 Judge	whether	݉ ൌ ܰ െ 	feasible	a	is	population	new	the	if	determine	yes,	If	.݈݂݃ܽ_ݐݏܾ݁

solution,	and	adjust	the	infeasible	solution	into	a	feasible	one.	
Step	22:	 If	݊ ൌ ݃݁݊,	go	to	Step	23;	otherwise,	go	to	Step	4.	
Step	23:	 Terminate	the	iteration	and	generate	the	optimal	solution.	

7. Results and discussion: A case study 

This	section	aims	to	verify	the	effectiveness	of	the	proposed	model	and	algorithm	through	a	case	
study.	 In	our	 case,	 the	 final	product	A	 (Fig.	 5)	needs	 to	be	assembled	 from	 five	 jobs.	Each	 job	
must	 go	 through	operations	on	 five	processing	machines	 (M1,	M2,	M3,	M4,	M5).	The	processing	
machines	can	work	 in	parallel.	Thus,	 the	 time	of	each	processing	operation	of	each	 job	can	be	
denoted	as	Tij,	with	 i	being	the	number	of	 jobs	(i=1,	2,	3,	4,	5)	and	 j	being	the	number	of	pro‐
cessing	machines	(j=1,	2,	3,	4,	5).	In	addition,	each	processed	job	must	go	through	operations	on	
four	 assembly	machines	 (A1,	A2,	A3,	A4).	Note	 that	 the	 assembly	operation	of	 a	 job	 should	not	
start	before	the	completion	of	the	job	processing.	
	

	
Fig.	5	The	structure	of	the	final	product	

	

Known	parameters	

The	fuzzy	operation	time	of	each	 job	 is	shown	in	Table	1,	while	the	serial	numbers	of	 the	ma‐
chines	that	process	and	assemble	each	job	are	 listed	in	Table	2,	where	the	delivery	time	is	ex‐
pressed	as	a	fuzzy	number	ܦ෩	(130,	135,	140,	145).	
	

Table	1	The	fuzzy	operation	time	of	each	job	

Parts	
Processing	and	assembly	machine	tools	

M1	 M2	 M3	 M4	 M5	 A1	 A2	 A3	 A4	
job1	 (4.5,5,5.5)	 (6.5,7,7.5) (4.5,5,5.5)	 (6.5,7,7.5) (5.5,6,6.5)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	
job2	 (9.5,10,10.5)	 (8.5,9,9.5) (5.5,6,6.5)	 (4.5,5,5.5) (9.5,10,10.5) (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	
job3	 (8.5,9,9.5)	 (4.5,5,5.5) (5.5,6,6.5)	 (4.5,5,5.5) (6.5,7,7.5)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	
job4	 (5.5,6,6.5)	 (5.5,6,6.5) (9.5,10,10.5)	 (3.5,4,4.5) (4.5,5,5.5)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	
job5	 (9.5,10,10.5)	 (5.5,6,6.5) (5.5,6,6.5)	 (5.5,6,6.5) (3.5,4,4.5)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	
part6	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (14.5,15,15.5) (0,0,0)	 (0,0,0)	 (0,0,0)	
part7	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (19.5,20,20.5)	 (0,0,0)	 (0,0,0)	
part8	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (19.5,20,20.5)	 (0,0,0)	
part9	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (0,0,0)	 (24.5,25,25.5)

	
Table	2	The	serial	numbers	of	the	machines	that	process	and	assemble	each	job	

Parts/Assembly	process	
Processing/assembly	process

1	 2 3 4	 5
job1	 M3	 M1 M2 M4	 M5
job2	 M2	 M3 M5 M1	 M4
job3	 M3	 M4 M1 M2	 M5
job4	 M2	 M1 M3 M4	 M5
job5	 M3	 M2 M5 M1	 M4
part6	 A1	 A1 A1 A1	 A1
part7	 A2	 A2 A2 A2	 A2
part8	 A3	 A3 A3 A3	 A3
part9	 A4	 A4 A4 A4	 A4
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Assumptions	
 The	processed	job	can	be	transported	directly	to	the	assembly	machines	and	the	transport	

time	should	be	taken	into	consideration.	
 Regardless	 of	 the	 storage	 after	 all	 jobs	 are	 processed,	 the	 buffer	 storage	 between	 pro‐

cessing	and	assembly	is	finite,	and	the	premature	completion	of	jobs	is	subjected	to	a	pen‐
alty	on	the	buffer	storage.	

 Processing	machines	and	assembly	machine	are	readily	available.	
 The	 jobs	are	processed	strictly	according	 to	 the	operation	 sequence,	 and	 the	operations	

should	not	be	interchanged.	
 The	jobs	are	allowed	to	wait	between	different	operations,	and	the	machines	are	allowed	

to	remain	idle	before	the	jobs	arrive.	
 The	machines	do	not	malfunction.	

Solution	and	analysis	

The	 proposed	GA	was	 programmed	 on	Matlab	with	 the	 following	 parameters:	 the	 population	
size	of	20,	the	number	of	iterations	of	100,	the	crossover	probability	Pc	of	0.9,	and	the	mutation	
probability	Pm	of	0.1.	Through	the	simulation,	the	optimal	solution	was	determined	as	x=	[4	2	2	
1	4	1	1	2	3	3	2	1	5	3	4	5	4	5	5	2	1	3	5	4	3	6	7	8	9];	the	degree	of	satisfaction	of	delivery	time	was	
1.	Then,	the	mean	fuzzy	time	of	each	operation	was	plotted	as	a	Gantt	chart	(Fig.	6).	

The	case	study	shows	that	the	proposed	model	can	successfully	schedule	the	processing	and	
assembly	machines.	 Taking	 the	 assembly	 stage	 into	 consideration,	 this	 research	 improves	 the	
practical	value	of	the	scheduling	problem	and	helps	to	prepare	a	feasible	scheduling	plan.	After	
all,	most	processed	jobs	in	real	world	need	to	be	treated	on	the	assembly	line	before	forming	the	
final	product.	

Besides,	 this	 paper	 fully	 considers	 the	 delivery	 time,	 a	 key	 determinant	 of	 the	 production	
schedule.	Therefore,	the	scheduling	of	our	model	is	closer	to	the	actual	production	situation	than	
the	previous	models.	 The	proposed	model	 enjoys	 high	practical	 value	 by	 taking	 the	 customer	
satisfaction	of	the	delivery	period	as	the	goal.	

In	addition,	 the	processing	and	assembly	time	were	expressed	as	triangular	fuzzy	numbers,	
while	the	delivery	time	was	described	as	trapezoidal	fuzzy	numbers.	These	fuzzy	numbers	accu‐
rately	reflect	the	uncertainty	in	operation	time,	assembly	time	and	delivery	time	of	actual	pro‐
cessing	and	assembly	lines.	
	

	
Fig.	6	Gantt	chart	of	mean	fuzzy	time	of	each	operation	

Further	discussion	

Processing	and	assembly	are	considered	 into	JSP	simultaneously	 in	this	paper.	The best solution 
obtained by scheduling processing	 machines and assembly machines simultaneously is more feasible 
for determining the real scheduling solution than the best solution obtained by scheduling processing 
machines only.	

In	the	actual	production	environment,	there	are	many	factors	affecting	production	scheduling,	
such	as	batch,	multi‐objective,	multi‐process	routes	and	so	on.	In	the	future	works,	the	extended	
JSP	 considering	 different	 factors	will	 be	 studied.	 Besides,	 for	 improving	 performance	 of	 algo‐
rithms,	algorithm	improvment	is	another	important	aspect	in	future	works.	
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8. Conclusion 
The traditional JSPs often takes the minimal makespan as the only optimization goal, and only 
considers the scheduling of the machines related to processing. Hence, it is difficult for the tradi-
tional models to demonstrate the actual production situation. Considering the uncertainty of 
time factors in actual production, this paper represents operation time of the jobs as triangular 
fuzzy numbers and the delivery time of the final product as trapezoidal fuzzy numbers. Then, a 
mathematical model was established for processing and assembly scheduling, aiming to achieve 
the mean satisfaction degree on delivery time. In light of the complexity of the problem, a GA 
was designed to solve our model under the time constraints on processing and assembly, and 
verified through a case study on processing and assembly scheduling. The results show that our 
scheduling model mirrors the actual production situation and provides a good reference for JSP 
scheduling under multiple uncertainties. 
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