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This	paper	proposes	a	model	to	determine	the	optimal	markdown	timing	for	a	
company	with	strategic	customer	purchasing	behaviour.	 Since	 strategic	 cus‐
tomers	 are	 aware	 of	 potential	markdown	under	 the	 posted	 pricing	 scheme,	
they	may	choose	to	wait	longer	to	maximise	their	utilisation	instead	of	buying	
a	product	and	 fulfilling	an	 instant	 surplus.	On	 the	other	hand,	 the	seller	can	
delay	the	markdown	decision	until	it	is	proved	to	be	profitable	and	hence	has	
an	option	to	determine	the	timing.	 In	estimating	the	value	of	 the	markdown	
decision,	the	seller’s	option	needs	to	be	estimated.	However,	the	value	of	the	
option	is	hard	to	be	captured	by	the	conventional	net	present	value	analysis.	
Under	 market	 uncertainty	 where	 potential	 customer	 demand	 evolves	 over	
time,	the	seller’s	revenue	function	is	in	the	form	of	a	stochastic	dynamic	pro‐
gramming	model.	Applying	a	real	option	approach,	we	investigate	the	optimal	
price	 path	 and	 propose	 the	 optimal	 markdown	 threshold.	 Given	 the	 mark‐
down	costs	incurred,	we	find	that	the	optimal	discount	timing	for	the	firm	is	
determined	by	a	threshold	policy.	Furthermore,	our	results	show	that	if	future	
market	becomes	more	uncertain,	the	seller	needs	to	wait	longer	or	delay	the	
markdown	 decision.	 In	 addition,	 the	 optimal	 threshold	 of	 the	 markdown	
decreases	exponentially	in	a	declining	market,	which	explains	the	early	mark‐
down	policy	of	some	consumer	product	companies.	
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1. Introduction 

Demand	management	becomes	the	basis	for	the	decision	making	of	the	firms;	from	production	
planning	to	inventory	management	[1,	20].	Pricing	policies	are	frequently	used	tools	when	firms	
manage	their	demand	[20].	The	pricing	policies	of	a	firm	are	often	complex	and	diverse	depend‐
ing	on	the	business	environment	in	which	the	company	lies	[1,	5,	6,	14,	20].	In	the	fashion	indus‐
try,	 for	 instance,	simple	markdown	pricing	 is	widely	used	to	sell	out	remaining	stock	after	the	
regular	sales	season	[21].	Some	customers	may	choose	to	wait	and	purchase	the	product	later	at	
the	markdown	price	rather	than	buying	it	right	away.	On	the	other	hand,	airline	companies	con‐
tinuously	mark	up	the	prices	of	tickets	upon	departure.	When	looking	for	an	airline	ticket,	cus‐
tomers	can	expect	an	 increase	 in	prices	 if	 they	delay	their	purchase.	Therefore,	understanding	
customer	purchasing	behaviour	is	critical	for	the	firm	to	make	pricing	decisions.	

Strategic	 customers	 in	 the	operations	management	 literature	 are	defined	 as	 those	who	are	
aware	of	the	firm's	dynamic	pricing	policies	and	make	inter‐temporal	purchasing	decisions	[20].	
Since	such	customers	are	conscious	of	potential	changes	in	prices	at	a	later	point	in	time,	they	
are	being	strategic	rather	than	myopic.	Instead	of	buying	a	product	and	fulfilling	an	instant	sur‐
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plus,	 they	 strategically	wait	 for	 a	 future	 price	markdown	 and	 thereby	 seek	 to	maximise	 their	
utilisation	[5,	6,	18].	As	such,	strategic	customers	have	become	a	substitute	for	myopic	custom‐
ers	who	simply	make	a	buying	decision	if	the	price	is	lower	than	their	valuation	[5,	6,	20].	There‐
fore,	 firms	must	comprehend	the	strategic	behaviour	of	customers	and	find	an	optimal	pricing	
scheme	based	on	it	to	maximise	revenue.	

In	response	to	the	strategic	behaviour	of	customers,	 the	 firm's	decisions	are	generally	two‐
fold:	the	timing	of	price	changes	and	the	availability	of	the	product	[3,	20].	The	firm	sells	a	prod‐
uct	for	a	duration	of	time,	after	which	it	may	decide	to	change	the	price	at	a	certain	point	in	time.	
Limited	 supply	 could	 also	 be	 used	 as	 a	 marketing	 strategy	 to	 increase	 the	 sense	 of	 urgency	
among	customers.	Therefore,	customers	in	the	market	choose	either	to	purchase	a	product	at	its	
current	price	or	 to	 revisit	 it	 after	 the	price	 goes	down,	 considering	not	only	 the	 timing	of	 the	
markdown	but	also	the	possibility	of	sellouts.	

In	this	paper,	we	investigate	the	markdown	decision	of	a	monopolist	who	wishes	to	maximise	
expected	revenues	in	the	presence	of	strategic	customers.	Our	model	captures	several	important	
properties	of	the	market	environment	for	consumer	products.	First,	the	seller	commits	to	a	fixed	
path	 of	 two	 prices:	 it	may	 sell	 a	 product	 for	 a	 duration	 of	 time,	 after	which	 it	may	 decide	 to	
change	the	price.	The	markdown	decision	can	be	made	no	more	than	once	over	the	sales	horizon	
and	 is	 hence	 irreversible.	 Second,	 customers	 show	 strategic	 purchasing	 behaviour	 towards	
firms:	even	if	the	valuation	of	the	product	exceeds	the	price	of	the	product	during	the	first	part	
of	the	sales	horizon,	customers	may	not	simply	purchase	it.	Instead,	their	decision	to	purchase	is	
based	on	the	valuation	that	exceeds	a	certain	level,	thus	following	a	threshold	policy.	Third,	po‐
tential	customer	demand	is	stochastic.	In	particular,	the	market	size	follows	a	geometric	Brown‐
ian	motion	that	evolves	dynamically	over	time.	

We	consider	a	seller's	problem	on	deciding	the	optimal	price	path	and	the	timing	of	a	mark‐
down	 under	 demand	 uncertainty.	 Specifically,	we	 present	 a	 stochastic	 dynamic	 programming	
model	where	the	seller	has	a	single	opportunity	 to	discount	the	price	of	 the	product	at	a	sunk	
cost.	Customers	in	the	market	are	aware	of	a	potential	markdown	and	the	likelihood	of	a	sellout.	
Based	on	customers'	valuation	in	regard	to	the	two	prices,	the	value	of	the	firm	is	expressed	as	a	
stream	of	expected	revenues.	Solving	the	problem	using	a	real	option	approach,	we	show	that	
the	seller's	optimal	markdown	timing	decision	 is	based	on	the	threshold	policy.	To	the	best	of	
our	knowledge,	this	is	one	of	the	first	studies	that	considers	a	posted	pricing	scheme	under	mar‐
ket	uncertainty.	

The	remainder	of	the	paper	is	organised	as	follows.	Section	2	outlines	previous	related	works	
to	summarise	extant	research.	Section	3	proposes	a	revenue	maximisation	model,	and	Section	4	
continues	with	the	topic	by	analysing	the	solution	of	the	model.	Finally,	we	discuss	broader	find‐
ings,	conclusions,	and	potential	future	research	opportunities	in	Section	5.	

2. Literature review 

Strategic	customers	and	firms'	pricing	policy	problems	have	become	an	increasingly	productive	
research	 area.	Among	others,	 studies	 regarding	 customer	purchasing	behavior	 are	 thoroughly	
reviewed	by	Shen	and	Su	[20].	Most	of	the	papers	in	the	literature	consider	two	important	ele‐
ments	 in	modelling	strategic	customer	behaviour.	The	first	 is	the	arrival	process	of	customers.	
Whether	customers	preexisted	in	the	market	[7,	13,	18]	or	sequentially	arrived	in	the	market	[3,	
14,	21,	23]	is	a	question	based	on	this	premise.	The	second	is	the	decision	making	of	the	custom‐
ers	and	how	the	decision	making	ultimately	forms	an	equilibrium.	Regardless	of	the	market	size,	
the	decision	making	of	an	individual	customer	makes	an	impact	on	the	dynamics	of	the	market	
to	 some	 extent.	 For	 instance,	 when	 many	 customers	 purchase	 goods	 in	 the	 early	 stages,	 the	
product	may	run	out	of	stock	for	some	of	those	who	initially	decided	to	delay	the	purchase	[13].	
Sometimes	customers	may	have	to	purchase	the	goods	at	an	even	higher	price	if	the	firm	or	sell‐
er	chooses	to	adopt	a	markup	pricing	policy	[24].	A	strategic	customer	tries	to	make	an	optimal	
decision,	foreseeing	these	situations,	and	this	process	may,	 in	turn,	comprise	an	equilibrium	in	
decision	making.	The	seller,	on	the	other	hand,	sets	his	or	her	pricing	policy	based	on	this	equi‐
librium	in	an	effort	to	maximise	profit.	Therefore,	this	game‐theoretic	relationship	with	conflict‐
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ing	 interests	between	the	seller	and	the	strategic	buyers	necessarily	 leads	to	a	highly	complex	
model	in	many	studies.	

There	are	 two	types	of	simplifications	 to	deal	with	 the	complexity	 in	 the	modelling.	Firstly,	
the	time	of	the	price	change	is	often	fixed.	A	specific	number	of	periods	are	presumed,	and	static	
pricing	is	maintained	for	the	duration	of	the	periods.	In	other	words,	the	analysis	of	optimal	pric‐
ing	is	based	on	the	definite	number	of	periods	in	which	a	fixed	price	is	offered,	rather	than	find‐
ing	the	price	changing	period	one	by	one	[5‐7,	13].	The	second	case	is	the	size	of	the	market:	in	
applying	a	game	theory	approach,	a	small	market	size	is	assumed.	In	this	situation,	a	customer	
predicts	 the	 decision	making	 of	 other	 consumers	 to	make	 his	 or	 her	 optimal	 decision	 and	 an	
equilibrium	of	strategic	purchases	 is	achieved.	Aviv	and	Pazgal	[3]	 found	that	a	 firm's	benefits	
from	price	differentiation	may	decrease	as	customers	become	more	strategic,	and	hence	optimal	
pricing	policies	may	result	in	potential	revenue	losses	in	the	presence	of	strategic	customers.	

Customers'	purchasing	decisions	depend	on	the	interaction	among	the	pricing	policy,	availa‐
bility,	customer	valuations,	remaining	time,	and	so	forth.	Under	the	posted	pricing,	for	instance,	
where	the	seller	announces	its	price	path	in	advance,	the	availability	of	the	product	or	the	possi‐
bility	to	purchase	it	later	in	time	will	be	the	major	concern	for	the	customer	[2,	7,	13].	As	Dasu	
and	Tong	[7]	specifically	pointed	out,	the	seller's	dynamic	pricing	decision	is	meaningful	only	if	
customers	are	aware	of	the	stock‐out	possibility,	while	the	impact	of	the	perception	on	strategic	
customer	behaviour	is	different	 in	heterogeneous	customer	valuations	[23].	 In	many	studies,	a	
two‐period	posted	pricing	scheme	has	been	used	due	to	its	simplicity	and	applicability,	although	
the	seller	can	still	make	a	price	change	at	any	time	[4,	7,	13,	15].	Dasu	and	Tong	[7],	in	particular,	
found	that	 the	approximation	close	 to	 the	maximum	revenue	can	be	achieved	by	two	or	 three	
pricing	changes.	In	this	study,	our	model	will	also	be	based	on	the	two‐period	posted	pricing	in	
continuous	time	periods	to	find	the	optimal	timing	of	price	change,	while	the	availability	of	the	
item	is	limited	after	the	markdown.	

As	for	the	firm's	point	of	view,	on	the	other	hand,	market	size	is	the	main	source	of	uncertain‐
ty.	Given	the	price	and	the	timing	of	the	price	change,	the	firm's	revenue	must	be	significantly	
different	depending	on	changes	in	demand	at	the	moment.	Under	market	uncertainty,	the	seller	
can	either	make	an	 immediate	price	 change	or	 intentionally	delay	 the	decision	 to	observe	 the	
actual	demand	movement.	This	situation	is	very	common	in	many	operational	practices:	compa‐
nies	have	an	opportunity	to	invest	but	they	can	still	wait	for	new	information.	In	other	words,	a	
firm	with	 the	ability	 to	postpone	a	decision	has	 the	option,	not	 the	obligation,	 to	exercise	 it	 –	
making	 it	 analogous	 to	 holding	 a	 financial	 call	 option.	 Since	 first	 proposed	 by	 Pindyck	 [19],	
McDonald	and	Siegel	[17],	Dixit	and	Pindyck	[8]	and	others,	this	real	option	approach	has	been	
widely	borrowed	in	the	areas	of	marketing	and	operations	management	because	it	helps	us	to	
better	understand	the	true	value	of	the	investment	opportunity.	

Adopting	the	real	option	concept	is	not	completely	new	in	revenue	management	literature.	In	
numerous	papers,	the	dynamic	pricing	decision	is	determined	by	considering	the	option	value	of	
unsold	products	[11,	16].	Since	this	option	value	decreases	towards	the	end	of	the	time	horizon,	
the	optimal	price	path	also	decreases	over	time.	In	another	paper,	Gallego	and	Sahin	[10]	used	
the	 real	 option	 approach	 to	model	 uncertain	 customer	 valuations.	 In	 this	 paper,	 however,	we	
assume	that	potential	customer	demand	evolves	over	time	and	follows	the	geometric	Brownian	
motion	(GBM).	Assuming	the	known	distribution	on	customer	valuations	and	the	level	of	availa‐
bility,	we	explore	the	optimal	markdown	timing	problem	based	on	the	net	present	value	of	the	
seller's	expected	revenue.	To	the	best	of	our	knowledge,	in	the	literature	on	strategic	customers,	
there	 are	only	 a	handful	 of	 studies	 that	deal	with	 the	optimal	 timing	of	 price	 change,	 and	yet	
fewer	still	that	at	the	same	time	address	optimal	pricing	with	strategic	customers	under	market	
uncertainty.	

3. Model description 

In	this	paper,	we	consider	a	monopolistic	firm	that	sells	a	single	item	to	potential	customers	over	
two	periods.	The	firm	wants	to	maximise	its	net	present	value	of	expected	revenue.	Below,	we	
explain	further	assumptions	before	building	our	model.	
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Assumption	1.	The	monopolistic	 firm	 follows	a	two‐period	markdown	pricing	scheme	and	com‐
mits	to	the	price	path	in	both	phases.	

Assumption	2.	The	original	(݌௢)	and	markdown	prices	(݌௟)	are	pre‐announced	and	the	 in‐stock	
probability	(π)	in	the	second	period	is	also	given	information.	

Assumption	 3.	 Customers	are	 strategic	 rather	 than	myopic	and	are	aware	of	markdowns	and	
possibilities	of	stock‐outs.	

Assumption	4.	The	distribution	of	customer	valuations	(ܩሺ⋅ሻ)	is	known.	

3.1 Valuation of a strategic customer 

Suppose	that	there	is	a	monopolist	who	has	a	sufficiently	large	number	of	an	item.	Until	time	ܶ,	
the	item	is	initially	sold	at	price	݌௢,	and	after	ܶ	the	item	is	sold	at	the	markdown	price	݌௟	ሺ൑ 	.௢ሻ݌
The	two	prices,	݌௢	and	݌௟,	are	pre‐announced.	Customer	demand	follows	a	geometric	Brownian	
motion	(GBM),	and	each	customer	is	supposed	to	purchase	only	one	unit	of	the	item.	When	the	
seller	offers	a	markdown	price,	we	assume	that	the	seller	can	control	the	level	of	product	availa‐
bility,	ߨ,	to	induce	scarcity.	In	other	words,	in	the	second	period,	the	in‐stock	probability	decided	
by	the	seller	will	be	set	to	ߨ ൑ 1.	Controlling	the	availability	of	services	or	items	of	different	clas‐
ses	is	prevalent	in	revenue	management	[24]	and	inducing	a	level	of	scarcity	is	also	one	of	the	
most	common	strategies	in	marketing	[9,	22].	

Let	ܷ	denote	the	customer's	surplus.	Then	the	utilisation	of	the	customer	who	purchases	the	
item	right	now	is	as	follows:	

ܷ௢ ൌ ܸ െ 	௢݌ (1)

where	ܷ௢	is	the	surplus	of	the	customer	and	݌௢	is	the	current	price	of	the	product.	
Similarly,	the	utilisation	of	the	customer	who	decides	to	wait	for	the	discount	is	as	follows:	

௟ܷ ൌ ሺܸߨ െ ௟ሻ݌ ൅ 	ߠ (2)

where	ܸ	is	 the	 customer's	valuation	of	 the	product,	݌௢	is	 the	 current	price	of	 the	product,	݌௟	is	
the	 future	 price	 of	 the	 product,	 and	ߨ	is	 the	 service	 level	 of	 the	 product	 at	 the	 lower	price	݌௟.	
Thus,	 the	 stock‐out	 probability	 is	1 െ 	stands	ߠ	.ߨ for	 the	 customer's	 preference	 for	 risk;	ߠ ൏ 0	
indicates	 risk‐averse,	ߠ ൐ 0	risk‐taking,	 and	ߠ ൌ 0	risk‐neutral	 attitude.	 Furthermore,	 we	 as‐
sume	that	the	customers	are	either	risk‐averse	or	risk‐neutral,	which	is	a	prevalent	assumption	
made	by	many	researchers	[13,	15].	

In	this	setting,	the	strategic	customers	decide	to	purchase	in	the	first	period	if	their	valuation	
is	greater	than	or	equal	to	the	threshold	value.	The	purchasing	decision	of	the	strategic	customer	
is	determined	by	the	following	lemma.	

Lemma	1.	The	threshold	of	a	strategic	customer's	valuation	is	given	by:	

߬ ൌ
௢݌ െ ௟݌ߨ ൅ ߠ

1 െ ߨ
	 (3)

Proof.	The	two	choices,	purchasing	right	now	or	waiting	for	a	discount,	generate	the	same	sur‐
plus	when	ܷ௢ ൌ ܷ݈.	Solving	the	equation,	a	strategic	customer	will	have	the	following	threshold.	
That	is,	

ܸ െ ௢݌ ൌ ሺܸߨ െ ௟ሻ݌ ൅ 	.ߠ (4)
This	would	finish	the	proof.		

If	߬ ൐ 1,	no	customers	would	buy	in	the	first	period.	Furthermore,	we	assume	that	customers	
do	not	purchase	if	the	utilisation	is	less	than	zero	without	loss	of	generality.	That	means,	߬	is	not	
less	than	݌௢.	Therefore,	it	is	sufficient	to	consider	only	the	case	where	the	threshold	is	between	
the	first	period's	pricing	and	one.	That	is,	

௢݌ ൑ ߬ ൑ 1	 (5)

This	also	decides	the	upper	and	the	lower	bounds	of	ߠ	accordingly.	
Following	the	literature,	potential	customer	demand	is	assumed	to	be	a	multiplication	of	the	

customer	value	function	and	the	time‐varying	potential	demand.	That	is,	the	demand	function	is	
given	by	
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ܳ ൌ ሺܸሻܺܩ̅ ൌ ሼ1 െ 	ሺܸሻሽܺܩ̅ (6)

where	̅ܩሺܸሻ	is	 a	 known	distribution	 function	 of	 the	 product	 at	 customer	 valuation	ܸ	,	 and	ܺ	is	
the	multiplicative	demand	shock	process.	This	may	be	thought	as	demand	in	which	the	product	
has	a	unit	price.	

In	 the	 first	period,	a	 strategic	customer	would	purchase	 the	product,	 if	ܷ௢ ൒ ௟ܷ	and	ܷ௢ ൒ 0.	
Therefore,	from	the	conditions,	

ܸ െ ௢݌ ൒ ሺܸߨ െ ௟ሻ݌ ൅ ܸ and ߠ ൒ 	௢݌ (7)

we	have	

ܸ ൒ ߬.	 (8)

Since	ܸ ൒ ߬	for	the	customers	purchasing	in	the	first	period,	the	current	demand	function	is	

ܳ௢ ൌ ሼ1 െ ሺ߬ሻሽܺܩ ൌ ൜1 െ ܩ ൬
௢݌ െ ௟݌ߨ ൅ ߠ

1 െ ߨ
൰ൠ ܺ.	 (9)

On	the	other	hand,	a	proportion	of	customers	would	wait	and	purchase	later	at	a	lower	price,	
if	 ௟ܷ ൒ ܷ௢	and	 ௟ܷ ൒ 0.	The	valuation	of	such	customers	is	as	follows:	

௟݌ ൑ ܸ ൑ ߬.	 (10)

Hence,	the	demand	function	of	the	customers	who	come	back	later	in	the	second	period	to	pur‐
chase	will	be:	

ܳ௦ ൌ ሼܩሺ߬ሻ െ ௟ሻሽܺ݌ሺܩ ൌ ൜ܩ ൬
௢݌ െ ௟݌ߨ ൅ ߠ

1 െ ߨ
൰ െ ௟ሻൠ݌ሺܩ ܺ.	 (11)

Finally,	when	the	product	starts	being	sold	at	a	markdown	price	݌௟,	any	customer	whose	val‐
uation	is	at	least	greater	than	the	price	would	purchase	it.	Namely,	the	demand	function	will	be:	

ܳ௟ ൌ ሼ1 െ 	.௟ሻሽܺ݌ሺܩ (12)

Without	 loss	 of	 generality,	 let	 the	 valuation	 of	 customers,	ܸ,	 be	 uniformly	 distributed	 over	
[0,1].	Then	the	demand	for	each	case	is	given	as	follows:	

ܳ௢ ൌ ቊെ
௢ଶ݌

1 െ ߨ
൅
௟݌௢݌ߨ
1 െ ߨ

൅
ሺ1 െ ߨ ൅ ௢݌ሻߠ

1 െ ߨ
ቋܺ	 (13)

ܳ௦ ൌ ቆെ
௟݌ߨ

ଶ

1 െ ߨ
൅
௟݌௢݌ߨ
1 െ ߨ

൅
௟݌ߠߨ
1 െ ߨ

ቇܺ	 (14)

ܳ௟ ൌ ሺ1 െ 	.௟ሻܺ݌ (15)

3.2 Customer demand 

In	this	paper,	we	use	a	geometric	Brownian	motion	(GBM)	to	formulate	the	multi‐plicative	de‐
mand	shock	ܺ	at	time	ݐ.	That	means	the	relative	change	in	demand,	݀ܺ௧/ܺ௧ , within	a	short	time	
interval,	ሾݐ, ݐ ൅ ‐follow	the	by	represented	are	demand	of	dynamics	The	.ݐ	time	with	vary	can	ሿ,ݐ݀
ing	formula:	

݀ܺ௧ ൌ ݐ௧݀ܺߤ ൅ ௧݀ܺߪ ௧ܹ,	 (16)

where	ߤ	is	the	growth	rate	or	drift	rate	in	demand,	ߪ	is	the	volatility	of	the	process,	and	 ௧ܹ	is	a	
standard	Wiener	process.	 If	ߤ ൐ 0,	market	 size	 is	 increasing	over	 time.	 If	ߤ ൏ 0,	market	 size	 is	
decreasing.	

This	continuous	random	variable	ܺ௧	is	said	to	have	lognormal	distribution	because	the	inte‐
gral	of	Eq.	16	gives	the	following	demand	function	(see	Appendix	A	for	the	derivation):	

ܺ௧ ൌ ܺ଴݁൫ఓିఙ
మ ଶ⁄ ൯௧ାఙௐ೟,	 (17)

where	ܺ଴	is	the	initial	demand.	While	the	bell‐shaped	pattern	of	demand	is	expected	by	Eq.	17,	
the	realisation	of	demand	will	substantially	deviate	from	it,	depending	on	the	market	volatility,	
as	shown	in	Fig.	1.		
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Fig.	1 Sample	path	of	potential	demand	from	the	geometric	Brownian	motion	in	a	decreasing	market.	

	
Note	 that	 the	 three	sample	paths	 in	Fig.	1	are	drawn	 from	Eq.	16	with	a	mean	drift	 rate	of	

ߤ ൌ െ0.1	and	 three	 standard	 deviations	 of	ߪ ൌ 0.05, 0.1,	 and	 0.2.	 As	 shown	 in	 the	 figure,	 the	
sample	path	with	a	larger	standard	deviation	tends	to	fluctuate	significantly,	while	all	three	tra‐
jectories	have	a	decreasing	trend	in	common	due	to	the	negative	mean	drift	rate.	

3.3 Optimal timing of price discount 

Next,	we	consider	the	optimal	timing	problem	conditioned	on	the	customer's	purchasing	strat‐
egy.	We	develop	a	model	for	an	optimal	discount	timing	decision	using	a	real	option	model.	In	
practice,	the	company	has	an	"option"	to	delay	the	discount	and	hence	needs	to	determine	when	
the	price	should	be	discounted.	After	markdown,	the	company	would	make	revenue	ߗሺ்ܺሻ,	with	
an	irreversible	sunk	cost	ܭ	being	incurred	from	sales	promotion,	inventory	management,	and	so	
forth.	

Herein	we	formulate	the	value	function	of	the	firm	with	an	opportunity	of	the	discount	timing	
ܶ.	When	the	product	is	sold	at	the	original	price	݌௢,	a	proportion	of	customers,	ܳ௢,	whose	valua‐
tion	is	far	higher	than	݌௢,	or	greater	than	߬	,	will	decide	to	purchase	the	item.	A	group	of	strategic	
customers,	ܳ௦,	 whose	 valuation	 is	 between	߬	and	݌௢	would	 like	 to	 wait	 and	 see	 if	 the	 price	 is	
marked	down.	Once	 the	 firm	decides	 to	discount	 the	original	price	 to	 the	markdown	price,	݌௟,	
they	come	back	to	purchase	the	product	but	only	ߨ	of	them	will	be	able	to	get	one.	We	assume	
that	 such	demand	 is	 instantaneous,	meaning	 that	 customer	demand	accumulated	up	 to	 time	ܶ	
will	be	realised	at	time	ܶ	[3].	From	time	ܶ,	any	customers	whose	valuation	is	at	least	higher	than	
	.one	get	would	them	of	ߨ	only	again,	but,	product	the	purchase	to	like	would	௟݌

We	begin	with	 the	value	 function	of	 the	 firm	 for	 the	optimal	discount	 timing	problem.	The	
value	of	the	firm,	ܨሺܺሻ,	is	the	stream	of	revenue,	which	consists	of	three	cases	stated	earlier.	We	
use	dynamic	programming,	stipulating	an	exogenous	discount	rate	ݎ.	Then	ܨሺܺሻ	is	the	expected	
present	value	

ሺܺሻܨ ൌ max
்

ܧ ቈන ݁ି௥௧݌௢ሺ1 െ ߬ሻܺ௧݀ݐ
்

଴
൅ ݁ି௥் න ௟ሺ߬݌ߨ െ ݐ௟ሻܺ௧݀݌

்

଴
൅ ݁ି௥்ߗᇱሺ்ܺሻ቉	 (18)

where	

ᇱሺ்ܺሻߗ ൌ ܧ ቈන ௟ሺ1݌ߨ െ ݐ௟ሻܺ௧݀݌
ஶ

்
െ 	.቉ܭ (19)

Since	the	demand	of	strategic	customers	will	be	realised	at	time	ܶ,	we	rearrange	the	formula	so	
that	the	revenue	is	included	in	the	terminal	payoff	ߗሺ்ܺሻ.	Then	
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ሺܺሻ ൌ max
்

ܧ ቈන ݁ି௥௧݌௢ሺ1 െ ߬ሻܺ௧݀ݐ
்

଴
൅ ݁ି௥்ߗሺ்ܺሻ቉	 (20)

where	

ሺ்ܺሻߗ ൌ ܧ ቈන ௟ሺ߬݌ߨ െ ݐ௟ሻܺ௧݀݌
்

଴
൅ න ௥ሺ௧ି்ሻሺ1ି݁ߨ െ ݐ௟ሻܺ௧݀݌

ஶ

்
െ 	቉ܭ (21)

ൌ ܧ ቈන ௟ሺ߬݌ߨ െ ݐ௟ሻܺ௧݀݌
்

଴
቉ ൅ ܧ ቈ൅න ௥ሺ௧ି்ሻሺ1ି݁ߨ െ ݐ௟ሻܺ௧݀݌

ஶ

்
቉ െ 	ܭ (22)

ൌ ௟ሺ߬݌ߨ െ ܧ௟ሻ݌ ቈන ܺ௧݀ݐ
்

଴
቉ ൅ ሺ1ߨ െ ܧ௟ሻ݌ ቈන ݁ି௥ሺ௧ି்ሻܺ௧݀ݐ

ஶ

்
቉ െ 	ܭ (23)

Since	ܧ ቂ׬ ܺ௧݀ݐ
்
଴ ቃ ൌ ሺ݁ఓ் െ 1ሻܺ଴/ߤ	(See	 Appendix	 A)	 and	׬ൣܧ ݁ି௥ሺ௧ି்ሻܺ௧݀ݐ

ஶ
் ൧ ൌ ்ܺ ሺݎ െ ⁄ሻߤ ,	 we	

finally	have:	

ሺ்ܺሻߗ ൌ ௟ሺ߬݌ߨ െ ௟ሻሺ݁ఓ்݌ െ 1ሻ
ܺ଴
ߤ
൅ ሺ1ߨ െ ௟ሻ݌

்ܺ
ݎ െ ߤ

െ 	ܭ (24)

Substituting	߬	in	Eq.	3	into	the	formula,	the	value	function	of	the	firm	is	summarised	as	follows.	

Proposition	1.		The	value	function	of	the	firm	for	optimal	discount	timing	ܶ	is	given	by:	

ሺܺሻܨ ൌ max
்

ܧ ቈන
݁ି௥௧

1 െ ߨ
ሼെ݌௢ଶ ൅ ௟݌௢݌ߨ ൅ ሺ1 െ ߨ ൅ ݐ௢ሽܺ௧݀݌ሻߠ

்

଴
൅ ݁ି௥்ߗሺ்ܺሻ቉	 (25)

where	

ሺ்ܺሻߗ ൌ
ߨ

1 െ ߨ
ሺെ݌௢ଶ ൅ ௟݌௢݌ ൅ ௟ሻሺ݁ఓ்݌ߠ െ 1ሻ

ܺ଴
ߤ
൅ ሺ1ߨ െ ௟ሻ݌

்ܺ
ݎ െ ߤ

െ 	ܭ (26)

By	solving	this	stochastic	dynamic	programming	problem,	we	can	obtain	the	optimal	timing	
for	a	markdown.	The	option‐like	approach	shown	in	[17]	and	[19]	is	used	to	solve	the	dynamic	
stochastic	problem.	As	the	potential	demand	ܺ	evolves	stochastically,	the	optimal	strategy	is	to	
exercise	(markdown)	so	that	the	value	is	at	least	greater	than	the	critical	value	ܺ∗.	A	firm’s	op‐
timal	markdown	timing	solution	is	represented	in	the	following	proposition.	
Proposition	2.	A	company	considering	markdown	of	the	retail	price	will	have	a	value	function	as	
follows:	

ሺܺሻܨ ൌ

ە
۔

ఉܺߙۓ ൅
௢ሺ1݌ െ ߬ሻ

ݎ െ ߤ
ܺ ݂݅ ܺ ൏ ܺ∗

௟ሺ߬݌ߨ െ ௟ሻሺ݁ఓ்݌ െ 1ሻ
ܺ଴
ߤ
൅ ሺ1ߨ െ ௟ሻ݌

ܺ
ݎ െ ߤ

െ ܭ ݂݅ ܺ ൒ ܺ∗
	 (27)

where	

ܺ∗ ൌ
ߚ

1 െ ߚ
⋅

ݎ െ ߤ
ሺ1ߨ െ ௟ሻ݌ െ ௢ሺ1݌ െ ߬ሻ

൜ܭ െ ௟ሺ߬݌ߨ െ ௟ሻሺ݁ఓ்݌ െ 1ሻ
ܺ଴
ߤ
ൠ	 (28)

	

ߙ ൌ
ሺ1ߨ െ ௟ሻ݌ െ ௢ሺ1݌ െ ߬ሻ

ݎ െ ߤ
⋅
ሺܺ∗ሻଵିఉ

ߚ
	 (29)

	

and	ߚ ൌ
1
2
െ
ߤ
ଶߪ

൅ ඨ൬
ߤ
ଶߪ

െ
1
2
൰
ଶ

൅
ݎ2
ଶߪ
	 (30)

Proof.	Let	ܶ	denote	the	timing	at	which	the	firm	discounts	the	original	price	of	the	item.	As	de‐
scribed	earlier,	the	firm	makes	revenue	flows	of	݌௢ሺ1 െ ߬ሻܺ	before	the	markdown.	At	time	ܶ,	the	
firm	would	make	revenue	flow	ߗሺ்ܺሻ	with	the	irreversible	sunk	cost	ܭ.	Therefore,	as	shown	in	
[8],	the	Bellman	equation	in	the	continuation	region,	where	values	of	ܺ	are	not	optimal	to	mark‐
down,	is	given	by:	

ሾܨݎ െ ௢ሺ1݌ െ ߬ሻܺሿ݀ݐ ൌ 	,ሿܨሾ݀ܧ (31)

which	implies	that	over	a	time	interval	݀ݐ,	the	total	expected	return	on	the	markdown	opportu‐
nity	is	equal	to	its	expected	rate	of	capital	appreciation.	
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Applying	Ito's	lemma,	we	have	

ܨ݀ ൌ ᇱ݀ܺܨ ൅
1
2
	,ᇱᇱሺ݀ܺሻଶܨ (32)

where	ܨᇱ ൌ ܨ݀ ݀ܺ⁄ 	and	ܨᇱᇱ ൌ ݀ଶܨ ݀ܺଶ⁄ .	
Substituting	Eq.	16	and	dividing	through	by	݀ݐ,	we	have	the	following	Bellman	equation	(see	

Appendix	B	for	proof):	

ᇱܨܺߤ ൅
1
2
ᇱᇱܨଶܺଶߪ െ ܨݎ ൅ ௢ሺ1݌ െ ߬ሻܺ ൌ 0	

(33)

To	ensure	the	existence	of	the	optimal	solution,	we	assume	that		ߤ ൏ ‐equa	differential	The	.ݎ
tion	ܨሺܺሻ	must	satisfy	the	following	three	boundary	conditions:	

ሺ0ሻܨ ൌ 0 (34)

ሺܺ∗ሻܨ ൌ ௟ሺ߬݌ߨ െ ௟ሻሺ݁ఓ்݌ െ 1ሻ
ܺ଴
ߤ
൅ ሺ1ߨ െ ௟ሻ݌

ܺ∗

ݎ െ ߤ
െ 	ܭ (35)

ᇱሺܺ∗ሻܨ ൌ
ሺ1ߨ െ ௟ሻ݌

ݎ െ ߤ
	 (36)

Eq.	34	holds	based	on	 the	observation	 that	 it	will	 stay	zero	 if	 the	stochastic	process	ܺ	goes	 to	
zero.	The	other	two	equations	are	to	impose	continuity	and	smoothness	at	the	critical	point	ܺ∗,	
the	potential	demand	at	which	it	is	optimal	to	discount.	Eq.	35	is	the	value‐matching	condition,	
indicating	the	revenue	the	firm	makes	upon	markdown.	Eq.	36	is	the	smooth‐pasting	condition	
at	the	point.	

Therefore,	the	solution	of	the	differential	Eq.	33	must	take	the	form	

ሺܺሻܨ ൌ ఉܺߙ ൅
௢ሺ1݌ െ ߬ሻ

ݎ െ ߤ
ܺ,	 (37)

where	ߙ	is	a	constant	to	be	determined	and	ߚ	is	one	of	the	solutions	of	the	following	quadrature	
equation:	

1
2
ߚሺߚଶߪ െ 1ሻ ൅ ߚߤ െ ݎ ൌ 0.	 (38)

Solving	the	equation	and	take	

ߚ ൌ
1
2
െ
ߤ
ଶߪ

൅ ඨ൬
ߤ
ଶߪ

െ
1
2
൰
ଶ

൅
ݎ2
ଶߪ

൐ 1	 (39)

to	ensure	the	boundary	condition.	
From	the	smooth	pasting	and	the	value‐matching	conditions,	we	have	

ሺܺ∗ሻܨ ൌ ሺܺ∗ሻఉߙ ൅
௢ሺ1݌ െ ߬ሻ

ݎ െ ߤ
ܺ∗ ൌ ௟ሺ߬݌ߨ െ ௟ሻሺ݁ఓ்݌ െ 1ሻ

ܺ଴
ߤ
൅ ሺ1ߨ െ ௟ሻ݌

ܺ∗

ݎ െ ߤ
െ 	ܭ (40)

and	

ᇱሺܺ∗ሻܨ ൌ ሺܺ∗ሻఉିଵߚߙ ൅
௢ሺ1݌ െ ߬ሻ

ݎ െ ߤ
ൌ
ሺ1ߨ െ ௟ሻ݌

ݎ െ ߤ
.	 (41)

Solving	these	equations	results	in:	

ܺ∗ ൌ
ߚ

1 െ ߚ
⋅

ݎ െ ߤ
ሺ1ߨ െ ௟ሻ݌ െ ௢ሺ1݌ െ ߬ሻ

൜ܭ െ ௟ሺ߬݌ߨ െ ௟ሻሺ݁ఓ்݌ െ 1ሻ
ܺ଴
ߤ
ൠ	 (42)

ߙ ൌ
ሺ1ߨ െ ௟ሻ݌ െ ௢ሺ1݌ െ ߬ሻ

ݎ െ ߤ
⋅
ሺܺ∗ሻଵିఉ

ߚ
	 (43)

and	ߚ ൌ
1
2
െ
ߤ
ଶߪ

൅ ඨ൬
ߤ
ଶߪ

െ
1
2
൰
ଶ

൅
ݎ2
ଶߪ
.	 (44)

Herein,	 only	 if	ܭ ൒ ௟ሺ߬݌ߨ െ ௟ሻሺ݁ఓ்݌ െ 1ሻܺ଴/ߤ	and	ߨሺ1 െ ௟ሻ݌ ൒ ௢ሺ1݌ െ ߬ሻ,	we	 have	 a	 positive	
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threshold	ܺ∗ ൒ 0.	This	result	leads	to	Proposition	3.		
Again,	the	threshold	ܺ∗	determines	the	optimal	markdown	timing	for	a	firm.	When	the	actual	

customer	demand	of	the	firm	at	time	ݐ	is	lower	than	the	threshold	ܺ∗,	it	is	beneficial	to	sell	the	
product	at	the	original	retail	price	݌௢,	making	the	revenue	stream	of	݌௢ሺ1 െ ߬ሻ/ሺݎ െ 	as	well	as	ሻߤ
giving	 the	 flexibility	 that	 the	 firm	can	hold	 for	 the	price	markdown,	measured	by	αXஒ.	On	 the	
other	hand,	when	the	actual	demand	is	greater	than	the	threshold	X∗,	the	firm	will	decide	to	dis‐

count	the	price	and	take	the	benefit	of	markdown	݌ߨ௟ሺ߬ െ ௟ሻሺ݁ఓ்݌ െ 1ሻ
௑బ
ఓ
൅

గሺଵି௣೗ሻ

௥ିఓ
ܺ	by	spend‐

ing	investment	cost	ܭ.	

4. Analysis and discussion 

This	section	explains	some	of	 the	 important	characteristics	 for	optimal	markdown	approaches	
suggested	earlier.	First,	the	following	proposition	illustrates	that	there	exists	a	positive	thresh‐
old	for	the	firm	at	any	given	time	ݐ	under	specific	conditions	for	ܭ	and	݌௟.	

Proposition	3.	 Let	ܶ∗	denote	the	optimal	timing	of	markdown	to	maximise	the	 firm	value.	Then	
the	optimal	markdown	time	is	finite	ܶ∗ ൏ ∞	[12],	and	the	first	epoch	that	demand	exceeds	the	thre‐
shold	is	estimated	at	the	following	time:	

ܶ∗ ൌ infሼݐ ൒ 0 | ܺ௧ ൒ ܺ∗ሽ,	 (45)

where	 there	 exists	 a	 positive	 threshold	ܺ∗ ൌ
ఉ

ଵିఉ
⋅

௥ିఓ

గሺଵି௣೗ሻି௣೚ሺଵିఛሻ
ቄܭ െ ௟ሺ߬݌ߨ െ ௟ሻሺ݁ఓ்݌ െ 1ሻ

௑బ
ఓ
ቅ	

at	time	ݐ	if	ܭ ൒ ௟ሺ߬݌ߨ െ ௟ሻሺ݁ఓ்݌ െ 1ሻܺ଴/ߤ	and	݌௟ ൑ 1 െ ሺ1݋݌ െ ߬ሻ/ߨ.	
Proof.	By	Proposition	2.	

Note	that	we	assume	a	decreasing	market	size	(ߤ ൏ 0).	As	time	ݐ	increases,	therefore,	we	can	
observe	 that	 the	 threshold	ܺ∗	decreases	 exponentially,	while	 the	minimum	value	 for	 the	 fixed	
cost	ܭ	that	is	required	for	this	approach	to	be	feasible	increases	exponentially	before	hitting	the	
lower	bound	ܭ	as	shown	in	the	following	proposition.	

Proposition	 4.	 As	ݐ → ∞,	 we	 have	 a	 threshold	ܺ∗ → 0	and	 the	 lower	 bound	 of	 the	 fixed	 cost	
ܭ → െ݌ߨ௟ሺ߬ െ 	.ߤ/௟ሻܺ଴݌

Again,	as	 the	 threshold	ܺ∗	for	 the	markdown	decreases	exponentially,	a	 firm	is	 likely	 to	de‐
cide	on	a	price	discount	in	the	relatively	early	stages.	It	also	indicates	that	no	significant	revenue	
is	 expected	 after	 a	 certain	 amount	of	 time	because	of	 the	 reduction	 in	 customer	demand,	 and	
hence	the	firm	no	longer	needs	to	invest	more	in	later	stages	under	this	approach.	

As	the	optimal	timing	ܺ∗	is	represented	by	some	exogenous	factors,	we	exploit	the	impact	of	
the	parameters	on	the	threshold.	

Proposition	5.	The	optimal	timing	threshold	increases	with	respect	to	demand	volatility.	That	is,	

	 ߲ܺ∗

ߪ߲
൐ 0	 (46)

Proof.	Noting	the	fractional	value	൒ 0,	we	take	the	derivative	of	ߚ	from	Eq.	16	with	respect	to	the	
demand	volatility,	ߪ.	We	know	ߚ ൐ 11	is	one	of	the	solutions	to	the	following	quadratic	function	
ܳሺߚሻ ൌ 0	(the	other	solution	is	ߚ ൏ 0),	where	

ܳሺߚሻ ൌ
1
2
ߚሺߚଶߪ െ 1ሻ ൅ ߚߤ െ 	.ݎ

(47)

Taking	a	derivative	of	the	equation,	we	have	
߲ܳ
ߚ߲

ߚ߲
ߪ߲

൅
߲ܳ
ߪ߲

ൌ 0.	 (48)

Since	߲ܳ ⁄ߚ߲ ൐ 0	and	߲ܳ ⁄ߪ߲ ൐ 0,	we	have	
ߚ߲
ߪ߲

൏ 0.	 (49)

Furthermore,	
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߲
ߚ߲

൬
ߚ

ߚ െ 1
൰ ൌ െ

1
ሺߚ െ 1ሻଶ

൏ 0.	 (50)

Finally,	the	derivative	of	the	optimal	threshold	ܺ∗	with	respect	to	σ	is,	

߲ܺ∗

ߪ߲
ൌ
ߚ߲
ߪ߲

߲
ߚ߲

൬
ߚ

ߚ െ 1
൰

ݎ െ ߤ
ሺ1ߨ െ ௟ሻ݌ െ ௢ሺ1݌ െ ߬ሻ

൜ܭ െ ௟ሺ߬݌ߨ െ ௟ሻሺ݁ఓ்݌ െ 1ሻ
ܺ଴
ߤ
ൠ ൐ 0	 (51)

This	proposition	indicates	that	the	optimal	markdown	threshold	increases	as	the	variation	in	
demand	increases.	Simply	put,	it	is	more	beneficial	for	the	firm	to	wait	and	delay	the	markdown,	
thereby	avoiding	the	risk	of	making	the	instantaneous	decision	when	the	market	is	highly	uncer‐
tain.	 The	 firm	 is	willing	 to	make	 the	markdown	 decision,	 only	when	 excessive	 revenue	 is	 ex‐
pected	where	the	amount	of	uncertainty	regarding	future	demand	is	larger.	

5. Conclusion 

In	this	paper,	the	optimal	pricing	policy	of	a	monopolistic	firm	is	investigated	with	strategic	cus‐
tomer	behaviour.	When	customers	strategically	wait	 for	a	discount,	 the	monopolist	has	an	op‐
tion	to	offer	a	markdown	to	maximise	its	revenue.	Assuming	that	the	underlying	customer	de‐
mand	is	stochastic,	evolving	dynamically	over	time,	we	develop	a	value	function	for	the	firm	to	
find	the	optimal	time	for	the	discount.	Using	a	real	option	approach,	the	stochastic	dynamic	pro‐
gramming	model	is	solved.	Given	the	fixed	cost	of	the	markdown,	service	level,	and	a	known	dis‐
counted	price,	the	optimal	policy	for	the	firm	is	to	follow	the	threshold	policy.	The	seller	max‐
imises	its	revenue	by	discounting	the	price	of	the	product	when	the	potential	customer	demand	
is	greater	than	the	threshold	value.	

The	contribution	of	this	paper	is	as	follows:	Considering	the	optimal	markdown	decision	for	a	
monopolistic	 seller	with	 strategic	 customers,	we	 address	 the	 gap	 in	 other	 literature	 on	 these	
customers	with	problems	under	market	uncertainty.	A	stochastic	dynamic	optimisation	model	is	
proposed	to	find	the	optimal	markdown	strategy	of	the	seller.	A	real	option	approach	is	applied	
to	obtain	a	closed‐form	solution	of	the	firm’s	demand	threshold.	The	analysis	of	the	optimal	tim‐
ing	reveals	the	relationship	between	the	degree	of	market	uncertainty	and	the	markdown	deci‐
sion‐making.		

Although	the	optimal	threshold	policy	is	found,	careful	interpretations	of	the	result	are	need‐
ed.	First,	customers	are	aware	of	potential	markdowns	while	the	discounted	price	is	known.	The	
seller	 may	 not	 exercise	 the	 option	 to	 markdown	 if	 the	 potential	 demand	 never	 exceeds	 the	
threshold.	 Second,	we	 found	 that	 there	 is	 an	 exponential	 decrease	 in	 the	 threshold	 value	 in	 a	
declining	market,	which	justifies	the	early	markdown	in	some	industries.	On	the	other	hand,	the	
optimal	markdown	threshold	increases	as	the	variation	in	demand	increases.	This	indicates	that	
a	 firm	needs	 to	 avoid	 the	 risk	of	 committing	markdown	pricing	 too	 early	when	 the	market	 is	
highly	uncertain.	The	company’s	manufacturing	and	production	planning	must	be	aligned	with	
this	strategic	decision	on	the	markdown	timing.	

There	 are	many	 challenges	 involved	 in	 the	 proposed	 study	 for	 future	 research.	 Discussion	
over	potential	demand	is	recommended.	Further	investigation	on	the	posted	pricing	scheme	of	
demand	diffusion	can	be	developed	where	the	new	product	gets	adopted	in	the	population	over	
time.	Another	potential	area	of	research	would	be	the	prediction	of	strategic	customer	demand	
by	applying	data‐driven	approaches,	such	as	meta‐heuristics	and	machine	learning	algorithms.	
Finally,	an	interesting	extension	would	be	to	implement	the	proposed	framework	on	real‐world	
problems	to	demonstrate	the	practical	implications	of	our	model.	
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Appendix A: Proof of Proposition 1 

Since 𝐸𝐸 �∫ 𝑋𝑋𝑡𝑡
𝑇𝑇
0 𝑑𝑑𝑑𝑑� = ∫ 𝐸𝐸 𝑇𝑇

0 [𝑋𝑋𝑡𝑡]𝑑𝑑𝑑𝑑 by Fubini's Theorem, we first apply Ito's lemma to 𝑑𝑑 ln𝑋𝑋𝑡𝑡 , to 
find 𝐸𝐸[𝑋𝑋𝑡𝑡]: 

𝑑𝑑 ln𝑋𝑋𝑡𝑡 =
1
𝑋𝑋𝑡𝑡
𝑑𝑑𝑋𝑋𝑡𝑡 −

1
2

1
𝑋𝑋𝑡𝑡2

(𝑑𝑑𝑋𝑋𝑡𝑡)2 (52) 

=
1
𝑋𝑋𝑡𝑡

(𝜇𝜇𝑋𝑋𝑡𝑡 + 𝜎𝜎𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑)−
1
2

1
𝑋𝑋𝑡𝑡2

(𝑋𝑋𝑡𝑡2𝜎𝜎2𝑧𝑧2) (53) 

= 𝜇𝜇 𝑑𝑑𝑑𝑑 + 𝜎𝜎 𝑑𝑑𝑑𝑑 −
1
2
𝜎𝜎2 𝑑𝑑𝑑𝑑 (54) 

After integrating and applying the fundamental theorem of calculus, we obtain: 

ln𝑋𝑋𝑡𝑡 − ln𝑋𝑋0 = �𝜇𝜇 −
1
2
𝜎𝜎2� 𝑡𝑡 + 𝜎𝜎𝑊𝑊𝑡𝑡 (55) 

𝑋𝑋𝑡𝑡 = 𝑋𝑋0𝑒𝑒
�𝜇𝜇−12𝜎𝜎

2�𝑡𝑡+𝜎𝜎𝑊𝑊𝑡𝑡 (56) 

The general form of expectation for Gaussian random variable is 𝐸𝐸[𝑒𝑒𝑋𝑋] = 𝐸𝐸 �𝑒𝑒𝜇𝜇+
1
2𝜎𝜎

2
�, where 𝑋𝑋 

has the law of a normal random variable with mean 𝜇𝜇 and variance 𝜎𝜎2. Since we know the stand-
ard Brownian motion 𝑊𝑊𝑡𝑡~𝑁𝑁(0, 𝑡𝑡), taking expectation on both sides yields the following [9]: 

𝐸𝐸[𝑋𝑋𝑡𝑡] = 𝑋𝑋0𝑒𝑒
�𝜇𝜇−12𝜎𝜎

2�𝑡𝑡𝐸𝐸[𝑒𝑒𝜎𝜎𝑊𝑊𝑡𝑡] (57) 

= 𝑋𝑋0𝑒𝑒
�𝜇𝜇−12𝜎𝜎

2�𝑡𝑡𝑒𝑒0+
1
2𝜎𝜎

2𝑡𝑡 (58) 

= 𝑋𝑋0𝑒𝑒𝜇𝜇𝑡𝑡 (59) 
Finally taking integral produces the following results: 

� 𝐸𝐸
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0
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0
=
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(𝑒𝑒𝜇𝜇𝑇𝑇 − 1) (60) 

Appendix B: Proof of Theorem 1 
Substituting Eq. 16 into Eq. 32, we have the following equation: 

𝑑𝑑𝑑𝑑 = 𝐹𝐹′(𝜇𝜇𝜇𝜇 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎 𝑑𝑑𝑑𝑑) +
1
2
𝐹𝐹′′(𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 + 𝜎𝜎𝜎𝜎 𝑑𝑑𝑑𝑑)2 (61) 

= 𝜇𝜇𝜇𝜇𝐹𝐹′𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎 𝐹𝐹′𝑑𝑑𝑑𝑑 +
1
2
𝜇𝜇2𝑋𝑋2𝐹𝐹′′(𝑑𝑑𝑑𝑑)2 + 𝜇𝜇𝜇𝜇𝑋𝑋2𝐹𝐹′′(𝑑𝑑𝑑𝑑)(𝑑𝑑𝑑𝑑) +

1
2
𝜎𝜎2𝑋𝑋2𝐹𝐹′′(𝑑𝑑𝑑𝑑)2 (62) 

Taking expectations on both sides to apply some properties of GBM and discarding all terms 
involving dt to a power higher than 1, we have  

E[𝑑𝑑𝑑𝑑] = �𝜇𝜇𝜇𝜇𝐹𝐹′ +
1
2
𝐹𝐹′′𝜎𝜎2𝑋𝑋2�dt = [𝑟𝑟𝑟𝑟 − 𝑝𝑝𝑜𝑜(1 − 𝜏𝜏)]𝑑𝑑𝑑𝑑. (63) 

Note that the term (𝑑𝑑𝑑𝑑)(𝑑𝑑𝑑𝑑) has magnitude (𝑑𝑑𝑑𝑑)3/2, 𝐸𝐸[𝑑𝑑𝑑𝑑] = 0, 𝐸𝐸[(𝑑𝑑𝑑𝑑)2] = 𝑑𝑑𝑑𝑑, and 𝐸𝐸[𝑑𝑑𝑑𝑑] = 0. 
After dividing through by 𝑑𝑑𝑑𝑑, we have the Bellman Eq. 33. 
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