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A B S T R A C T A R T I C L E   I N F O 
Production scheduling, which directly influences the completion time and 
throughput of workshops, has received extensive research. However, due to 
the high cost of real-world production verification, most literature did not 
verify the optimized scheduling scheme in real-world workshops. This paper 
studied the verification of scheduling schemes and environments, using a 
discrete event simulation (DES) platform. The aim of this study is to provide 
an efficient way to verify the correctness of scheduling environments estab-
lished by programming languages and scheduling results obtained by intelli-
gent algorithms. The system architecture of scheduling verification based on 
DES is established. The modelling approach via DES is proposed by designing 
parametric workshop generation, flexible production control, and real-time 
data processing. The popular distributed permutation flowshop scheduling 
problem is selected as a case study, where the optimal scheduling scheme 
obtained by a deep reinforcement learning algorithm is fed into the produc-
tion simulation model in Plant Simulation software. The experiment results 
show that the proposed scheduling verification approach can validate the 
scheduling scheme and environment effectively. The utilization and Gantt 
charts clearly show the performance of scheduling schemes. This work can 
help to verify the scheduling schemes and programmed scheduling environ-
ment efficiently without costly real-world validation. 
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1. Introduction
Production scheduling is an important problem for real-world manufacturers. Effective schedul-
ing schemes can help to reduce production costs, decrease completion time, and increase 
throughput. For several decades, production scheduling has received extensive research inter-
est. For example, only for the permutation flowshop scheduling problem, more than 100 kinds of 
heuristic and meta-heuristic algorithms have been proposed according to the reviews of 
Fernandez-Viagas et al. [1]. 
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Under the globalized economy, companies tend to establish production bases in different re-
gions to fulfill the production requirement of customers distributed in different areas. Under 
distributed manufacturing, the distributed permutation flowshop scheduling problem (DPFSP) 
was proposed by Naderi, Ruiz [2]. In the DPFSP, a set of factories are distributed in different 
regions. A set of jobs can be processed in one of the factories. The optimization problem is to 
minimize the total completion time of all jobs by properly assigning jobs to factories and sched-
uling jobs in each factory. The DPFSP has been solved by several kinds of intelligent algorithms, 
such as iterated greedy algorithm [3], artificial bee colony algorithm [4], cooperative memetic 
algorithm [5], etc. Some realistic characteristics have been considered in the DPFSP, such as se-
quence-dependent setup times[6, 7], blocking constraint [8, 9], no-wait constraint [10], no-idle 
constraint [11], hybrid flowshop [12], batch delivery [13], etc. 

Most product scheduling is optimized by intelligent algorithms. Usually, intelligent algo-
rithms are written in programming languages, such as C++, Java, MATLAB, Python, etc. At the 
same time, the production environment for simulating and optimizing the scheduling scheme is 
also programmed using programming languages. Although the scheduling scheme can be opti-
mized through the programmed scheduling simulation environment, the correctness of the 
scheduling simulation environment and scheduling scheme remains a problem. Since the verifi-
cation for an optimized scheduling scheme is crucial for implementation in real-world factories, 
the verification for the simulation environment and scheduling schemes should be performed. 

In current literature, only very few studies applied proposed scheduling models and algo-
rithms to real production workshops, such as applied to the manufacturing execution system 
(MES) of a real factory. A few studies only used real-world data as production instances. Howev-
er, most literature did not apply the scheduling algorithms and methods to real-world produc-
tion cases. For the scheduling application in real-world production, Zhou et al. [14] studied the 
multi-objective flexible job shop scheduling problem using multi-agent-based hyper-heuristics 
and applied the proposed methods and algorithms to an aero-engine blade manufacturing plant. 
For the usage of real-world data, Jiang et al. [15] studied a real case scheduling problem for aer-
ospace industry components in a flexible job shop. Li et al. [16] solved the welding shop schedul-
ing problem using a discrete artificial bee colony algorithm and applied the algorithm in a real-
world girder welding shop. Yankai et al. [17] studied the hybrid flowshop scheduling problem, in 
which numerical experiments are carried out based on real-world cases in a hot-rolling work-
shop. Wang et al. [18] studied the energy-aware welding shop scheduling problem using a de-
composition-based multi-objective evolutionary algorithm and applied the proposed algorithm 
to a real-world case. Schumacher, Buchholz [19] studied the hybrid flow shop scheduling prob-
lem under uncertainty and applied the proposed methods to a real-world production case. 
Ojstersek et al. [20] studied the multi-objective scheduling problem of flexible job shops using a 
real-world manufacturing dataset.  

Although some literature used real-world data for problem-solving, most scheduling litera-
ture did not verify the correctness of scheduling simulation and scheduling results. The reasons 
may be as follows. Firstly, the implementation of production scheduling in a real-world work-
shop costs too much with a lot of production resources required. In addition, some researchers 
do not have suitable industrial cooperation for validation or lack a production line in the labora-
tory for proper production validation. With the development of simulation software, discrete 
event simulation (DES) servers as an efficient tool for production optimization and validation. 

The Plant Simulation software is one of the widely used production simulation platforms. 
Some researchers used the Plant Simulation to optimize production processes and validate the 
production scenarios. Yang et al. [21] proposed a modelling method for workshop modelling in 
Plant Simulation and optimized the production configurations of an assembly shop. Xu et al. [22] 
studied the optimization problem of multi-stage production scheduling. Wang et al. [23] studied 
the reliability allocation method for a production system using Plant Simulation. Pekarcikova et 
al. [24] studied the simulation testing of the E-Kanban to improve the efficiency of logistics pro-
cesses. Yang et al. [25] optimized the assembly transport optimization problem in a reconfigura-
ble flow shop. Pekarcikova et al. [26] studied the bottleneck problem in the logistics flow of a 
manufacturing company using Plant Simulation software. Li et al. [27] dealt with the bottleneck 
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identification and alleviation in a blocked serial production line via Plant Simulation. Jurczyk-
Bunkowska [28] studied the tactical manufacturing capacity planning of a medium-sized pro-
duction enterprise by Plant Simulation. Gregor et al. [29] verified the routes of an automated 
guided vehicle using Plant Simulation. Li et al. [30] studied resource allocation in a production 
logistics system using Plant Simulation software. Gola et al. [31] used the Plant Simulation soft-
ware to identify the bottlenecks in a reconfigurable manufacturing system. 

In addition to optimizing and verifying the production process, Plant Simulation software has 
also been used to optimize some scheduling problems by using the built-in intelligent algorithm 
packages. Xu et al. [22] optimized a multi-stage production scheduling problem of an automated 
production system by using Plant Simulation software. Istokovic et al. [32] determined the order 
and size of production batches in a flow shop using the genetic algorithm optimization tool of 
Plant Simulation. Ferro et al. [33] used Plant Simulation to optimize the production planning of 
the textile industry. 

From the above literature review, we can know that the verification of the scheduling scheme 
has not received adequate research, and Plant Simulation software has been used to optimize 
and verify some production processes. Verifying the scheduling scheme and programmed envi-
ronment via the Plant Simulation platform is an efficient way. However, few studies investigated 
the verification of scheduling schemes and programmed production environment with the help 
of Plant Simulation. 

This paper studied the verification of scheduling schemes and environments based on a dis-
crete event simulation platform—Plant Simulation software. The distributed permutation flow-
shop scheduling problem is verified in Plant Simulation. The aim of this study is to provide effi-
cient and costless verifications for the programmed scheduling environment and obtained 
scheduling schemes, before applying those scheduling schemes in real-world workshops. The 
overall system architecture of verifying scheduling schemes via Plant Simulation platform is 
established. The distributed permutation flowshops are established in Plant Simulation platform. 
The simulation results in Plant Simulation validate the correctness of the programmed schedul-
ing environment programmed in Python and the scheduling results obtained by algorithms. 

Particularly, the main contributions of this paper are as follows: 
• The system architecture of scheduling verification based on scheduling optimization and 

Plant Simulation is established. The scheduling scheme is optimized by intelligent algo-
rithms programmed in Python language. Then, the optimized scheduling scheme is simu-
lated and verified in the established production model in Plant Simulation platform. 

• The modelling approach for production workshops via Plant Simulation platform is pro-
posed. The production simulation model is established by designing parametric modelling 
of workshops, flexible production control, and real-time data processing. 

• The whole verification process is validated by a case study on the distributed permutation 
flowshop scheduling problem. The videos of scheduling optimization and production sim-
ulation are provided. 

The rest of the paper is listed as follows. Section 2 illustrates the system architecture of the 
scheduling verification approach. Section 3 establishes the production workshops using Plant 
Simulation platform. Section 4 verifies the scheduling environment and scheme using a case 
study. Section 5 concludes the paper and provides suggestions for future research. 

2. System architecture of the scheduling verification approach 
The scheduling validation approach contains intelligent scheduling optimization via intelligent 
algorithms and production simulation via Plant Simulation. The intelligent scheduling optimiza-
tion generates the scheduling scheme and results. Based on the scheduling scheme, the produc-
tion model built in Plant Simulation platform executes the production process. The results ob-
tained from Plant Simulation and those obtained from the intelligent scheduling algorithms are 
compared to verify whether the programmed scheduling environment and scheduling algo-
rithms are correct. The system architecture of the scheduling verification approach is shown in 
Fig. 1. 



Yang, Wang, Xin, Xu 
 

404 Advances in Production Engineering & Management 17(4) 2022 
 

Scheduling scheme

Production results

Production simulation using Plant Simulation Scheduling optimization based on 
intelligent algorithms

inst Cmax obj
14 8444 111.43
8 8593 190.29

43 12703 253
…

Verify: the same?
Scheduling results

inst f 1st 2nd 3rd …

14
f1 3 18 33
f2 2 16 25
f3 4 22 10

8
f1 3 16 25
f2 2 18 33
f3 1 22 36

Production 
modelling 

Distributed manufacturing

...

PM1 PM2 PMm...

Factory 1

PM1 PM2 PMm...

Factory 2

PM1 PM2 PMm...

Factory f

Jobs Finished jobs

...J1 J2

Jn
...J1 J2

Jn

 
Fig. 1 The system architecture of the proposed scheduling validation approach based on intelligent scheduling 

        optimization and Plant Simulation 

2.1 Scheduling optimization based on intelligent algorithms 

Most production scheduling in the literature is optimized using intelligent algorithms. Before 
optimizing the scheduling scheme, the scheduling simulation environment should be pro-
grammed. The scheduling simulation environment can process jobs and calculate the objective 
of candidate schedule schemes. Some popular languages for programming the environment are 
C++, C#, MATLAB, Java, Python, etc. However, the real-time production interface reflecting the 
real-time production process is seldom programmed due to the coding complexity. Thus, it is 
difficult to check the correctness of the production simulation process for the programmed pro-
duction environment. 

The optimal scheduling scheme is obtained by performing the optimization process using in-
telligent algorithms. Due to extensive research, many kinds of algorithms have been proposed to 
solve the scheduling problems, such as heuristics, meta-heuristics [3], deep reinforcement learn-
ing algorithms [34], etc. 

After the optimization process, the optimal scheduling schemes, including the job sequence 
for each factory, and the beginning and end processing time, are obtained. Besides, the schedul-
ing results, including the completion time of all factories and the objective value for the schedul-
ing scheme, are returned. 

2.2 Production modelling and simulation execution 

The production simulation model is established in Plant Simulation platform according to the 
production resources and processes of the studied scheduling problem. Plant Simulation soft-
ware can build the production model efficiently by constructing machines, flow lines, jobs, buff-
ers, and source jobs. The production control is programmed by SimTalk language in Plant Simu-
lation platform. The scheduling scheme obtained by intelligent algorithms is fed to the produc-
tion model in Plant Simulation to get the correct scheduling results. 

2.3 Verification by comparing production and scheduling results 

After the exact execution of the job sequences in each factory, the production results for the se-
lected scheduling scheme are obtained from Plant Simulation platform. Then, the production 
results are compared with the scheduling results obtained from the intelligent algorithms. For 
each production scheme, the maximum completion time Cmax and objective value obj are com-
pared between the production and scheduling results. 
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3. Modelling of production workshops via Plant Simulation 
The production model can be established efficiently via Plant Simulation platform, which con-
tains powerful production modelling tools. The main components of a production simulation 
model are the production resources, production control methods, production data, and visuali-
zation tools, as shown in Fig. 2. The production resources contain machines, buffers, production 
lines, etc. The production control is realized by control methods. The production data contains 
some necessary production and real-time data, such as processing times, arrival time, due date, 
etc. The visualization tools provide various charts for the real-time production status and work-
shop performance. 

Production resources Production control

Production data Visualization

 
Fig. 2 The main compensates of a production model in Plant Simulation platform 

3.1 Parametric modelling of workshops 

Workshops are established through parametric modelling. Each workshop contains job storage, 
buffer, machines, and transfer line between machines. To increase the efficiency of modelling, all 
of the above production resources are generated by the control method Start as shown in Fig. 3. 
The code for generating machines and buffers is shown in algorithm 1. The production process is 
modelled exactly as those used in the scheduling algorithms. Thus, the unlimited buffer size is 
adopted between machines, the transfer time is not considered. 

Algorithm 1. Procedure of parametric modelling for generating a workshop using the SimTalk language 
1: for j:=1 to n  
2:  for i:=1 to m loop 
3:   if i>1 then 
4:    Name:=Sprint("BF",j,i) 
5:    Obj2:=.Materialflow.Buffer.createObject(current, 40+i*100, 100+(26+60*n)/n*(j+1), Name) 
6:    Obj2.ZoomX:=0.5, Obj2.ZoomY:=0.5, Obj2.Proctime:=0, Obj2.Capacity:=-1 
7:   .Materialflow.Connector.connect(Obj, Obj2), Obj:=Obj2 
8:   end 
9:   Name:=Sprint("M",j,i) 

10:   Obj2:=.Materialflow.Singleproc.createObject(current, 80+i*100,100+(26+60*n)/np*(j+1), Name) 
11:   Obj2.Label := sprint("M",j,i), OBj2.EntranceCtrl:="Set_time" 
12:   obj2.entrancectrlbeforeactions:=true 
13:   if i>1 then 
14:    .Materialflow.Connector.connect(Obj, Obj2) 
15:   end 
16:   Obj:=Obj2 
17:  next 

18: next 
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3.2 Modelling of production control 

The production control ensures that workshops produce jobs according to the correct produc-
tion processes and job sequences. Jobs are released from the source to the workshop when the 
arrival time is reached. The processing time is set for each machine when a new job arrived at 
this machine. When a job is finished in a machine, the job is transferred to the buffer of the next 
machine, and the next job is transferred from the previous buffer. When a job is finished in all 
machines of a workshop, the job is transferred to the Drain. 

3.3 Modelling of production data 

In addition to the production process, the production data is also fundamental to correctly simu-
late the production schedule. As shown in Fig. 3, the arrival time and due date of jobs are stored 
in the table file Attri. Jobs are created by the jobs_create method based on the arrival time of jobs. 
The table file PT stores the processing times of jobs on machines. The processing time is extract-
ed by the method Set_time and set for the corresponding machines. 

3.4 Statistical analysis and visualization 

One of the advantages of the Plant Simulation platform is its powerful statistical and visualiza-
tion function. As shown in Fig. 3, in the production model, the variables Cmax and obj denote the 
maximum completion time of workshops and the objective value of the current scheduling 
scheme, respectively. The Gantt chart shows the job sequence and processing durations on ma-
chines. The utilization chart reflects the production performance under the current scheduling 
scheme and production processes. In addition, the occupation of a buffer is provided to show 
how many jobs exist in buffers before a machine. Since buffer capability is supposed to be infi-
nite, the exact number of existing buffer jobs can help to set buffer sizes in a real production 
environment. 

 
Fig. 3 The production simulation model for the distributed permutation flowshop scheduling problem 

4. Verification experiments: A case study 
This section verifies the scheduling results obtained by the trained deep reinforcement learning 
(DRL) algorithm in Plant Simulation software using the modelling and validation approach pro-
posed above. The scheduling results, including the scheduling scheme, total completion time, 
and objective value, are generated by a DRL algorithm—advanced actor-critic (A2C). Then, the 
scheduling scheme is executed exactly in the production model in Plant Simulation platform. The 
production simulation results verified that the scheduling results obtained by the programming 
environment are correct. In addition, the statistical analysis and visualization were provided via 
Plant Simulation platform. 
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4.1 Scheduling scheme obtained by deep reinforcement learning 
The distributed permutation flowshop scheduling problem, which has attracted increasing re-
search interest in recent several years, is selected for verification. A production case with 130 
jobs, 8 machines, and 3 factories is selected as the case instance by referring to the production 
characteristics shown in the literature [3]. The scheduling scheme for this production instance is 
generated by a deep reinforcement learning algorithm A2C. After the dynamic scheduling, the 
scheduling results of the DRL version are obtained. 

Table 1 provides the production data of the selected production instance. Since the produc-
tion instance has as many as 130 jobs, Table 1 only provides the data of the first 10 jobs. As 
shown in Table 1, for each job j, the arrival time ATj, due date dj, unit tardiness cost αj, and pro-
cessing times on all of the 8 machines pM1,j-pM8,j are provided. 

Table 1 Production data of the studied production instance (only the data of the first 10 jobs are provided) 
j ATj dj αj pM1,j pM2,j pM3,j pM4,j pM5,j pM6,j pM7,j pM8,j 

1 0.00 2676.00 0.6 137 112 172 109 175 105 179 164 
2 0.00 1850.00 1.2 116 101 176 171 106 125 150 120 
3 0.00 2711.00 1.3 118 184 111 128 129 114 150 168 
4 0.00 2520.00 0.9 187 187 194 196 186 113 109 107 
5 5.40 4383.40 1.0 163 161 122 157 101 100 160 181 
6 18.14 4528.14 1.2 108 188 113 147 172 130 171 103 
7 18.14 2593.14 0.6 170 121 149 157 103 168 124 143 
8 21.74 1780.74 1.6 176 126 152 180 141 182 115 164 
9 23.33 1767.33 0.1 168 125 198 187 107 126 125 122 

10 24.29 4436.29 1.7 109 167 123 127 137 157 183 138 
 

The scheduling scheme and results are obtained using a deep reinforcement learning algo-
rithm by inputting the production data. The scheduling optimization interface in the Python 
programming environment for the studied case is shown in Fig. 4. 

The video of using deep reinforcement learning to solve the studied scheduling problem is 
provided online. The specific solving procedures are as follows. 

• Build the production environment and variable matrix in the Python environment;  
• Load the production data of the studied scheduling problem; 
• Load the trained model of the A2C algorithm; 
• Use the loaded A2C model to make scheduling decisions at each rescheduling point; 
• Record the processed jobs sequences of each factory, and calculate the objective value; 
• If all jobs are finished in the system, export the total completion time of the system, the ob-

jective value of the scheduling plan, and the job sequence of each factory. 

 
                       Fig. 4 The scheduling optimization interface in the Python programming environment. 
                       (The video of obtaining the optimal scheduling scheme by loading the DRL model is available at 
                       https://osf.io/qxze5?view_only=e10ee0e3cec44b85ba2f569cd26071f2) 

The job sequence of the three factories 
for the instance 14

The maximum completion time and 
objective of for the instance 14 under 
current scheduling scheme

https://osf.io/qxze5?view_only=e10ee0e3cec44b85ba2f569cd26071f2
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Table 2 The scheduling results obtained from the DRL algorithm (only the job sequence of the 
                       first 10 jobs are presented) 

Factory Completion time Objective value Job sequence 
1 

8444 111.43 
3 18 33 43 66 80 37 106 114 123 

2 2 16 25 36 53 75 8 102 113 128 
3 4 22 10 51 46 49 54 101 57 72 

 
After the optimization, the scheduling results are provided in Table 2. As shown in Table 2, 

the total completion time of the system is 8444, the objective value is 111.43. Besides, the job 
sequence of the three factories is provided. For factory 1, job j3, j18, j33,…, is processed succes-
sively. Only the first ten processed jobs of each factory are presented in Table 2. 

4.2 Verification using Plant Simulation 

The scheduling scheme resulting from the deep reinforcement learning is executed exactly in the 
production simulation model built in Plant Simulation platform. After production simulation, the 
scheduling results obtained from Plant Simulation are compared with the results obtained from 
the Python environment. 

Fig. 5 shows the production simulation results in Plant Simulation platform. As shown in Fig. 
5, the number of jobs that enter and exit the system is 130, indicating all jobs are processed in 
the system successfully. The completion time of the system is 8444, and the objective of the 
scheduling plan is 111.43. The scheduling results obtained in the Plant Simulation platform are 
the same as those in the Python environment. This verifies the correctness of the simulation 
environment programmed in Python and the correctness of the scheduling scheme calculation. 
In addition, Fig. 6-8 show the Gantt chart of the three factories. From Figs. 6-8, we can see that 
the jobs are processed closely in each factory. 

Since production validations in a real production environment cost too much, most schedul-
ing literature did not validate the scheduling results. However, the correctness of the pro-
grammed scheduling environment should be checked before performing further scheduling op-
timizations, and the correctness of the scheduling scheme should be verified before applying the 
scheduling scheme in real workshops. Our proposed scheduling verification approach provides 
the necessary support for verifying the scheduling environment and plans. Besides, more statis-
tical analysis and clear visualization can be performed via Plant Simulation platform. 

 
         Fig. 5 Production simulation results in Plant Simulation platform (The video of production simulation via 

  Plant Simulation platform is available at https://osf.io/dzc3u?view_only=e10ee0e3cec44b85ba2f569cd26071f2) 
 

https://osf.io/dzc3u?view_only=e10ee0e3cec44b85ba2f569cd26071f2
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Fig. 6 The Gantt chart of factory 1 for the studied scheduling problem 

 
Fig. 7 The Gantt chart of factory 2 for the studied scheduling problem 

 
Fig. 8 The Gantt chart of factory 3 for the studied scheduling problem 

4.3 Statistical analysis and visualization 

The Plant Simulation platform can provide powerful statistical analysis and visualization. In ad-
dition to the completion time and objective value, some production indicators are also important 
for assessing the efficiency and production status of the system. The utilization of machines and 
the occupation of buffers are analyzed. 

Fig. 9 shows the real-time utilization of all machines for the three factories. As shown in Fig. 
9, under the optimized scheduling plan, the utilization of machines is approximately 75 %, which 
is relatively high. Besides, the utilization between machines differs little, indicating that the 
workloads between those workshops and machines are balanced. 

Fig. 10 provides the occupation of buffers in the three factories. Since infinite buffer capabil-
ity is adapted as used in the scheduling literature, the number of jobs in a buffer can be 0-inf. As 
shown in Fig. 10, the most portion occurs when the number of jobs is 0. This indicates that for 
most cases, approximately 70-90 %, no jobs exist in the buffers. The number of jobs in all buffers 
can be 0,1,2,3, and 4. The second most frequent portion occurs when the number of jobs is 1. For 
factories 1 and 2, only a 5-10 % portion occurs when the number of jobs in buffers is 2. Factory 3 
requires more buffers in BF32 and BF36. From the above analysis, we can know that for each 
buffer the buffer size set to 2 can fulfil most production requirements. 

 

 
Fig. 9 The utilization of machines in the three factories 
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The analysis for buffer occupation is very necessary for efficient production, since if no buff-
ers are set the blocking will occur during production and therefore increase the completion time 
of the system. Most traditional scheduling literature simply assumes that infinite buffers exist 
between machines. However, in reality, it is impossible to set an infinite buffer size because the 
area between machines is limited. The buffer occupation analysis can help to determine the best 
buffer size to support efficient production. 

 
Fig. 10 The occupation of buffers in the three factories 

5. Conclusion 
This paper studied the verification of production scheduling via discrete event simulation. Since 
most scheduling literature did not consider the verification of programmed scheduling envi-
ronment and optimized scheduling schemes, this paper proposed a verification approach to val-
idate the correctness of programmed scheduling environment and intelligent algorithms, by 
establishing the production simulation model in a Plant Simulation platform. The system archi-
tecture for validating the programmed production environment and optimized scheduling 
schemes are proposed. The parametric modelling method for production workshops with cor-
rect production processes is proposed. The verification experiment is carried out by taking the 
distributed permutation flowshop scheduling problem as a case study. Experimental results 
show that the scheduling results obtained by a deep reinforcement learning algorithm pro-
grammed in Python language are the same as results obtained in Plant Simulation platform. This 
verifies the correctness of the programmed production environment and scheduling algorithms. 
Besides, the utilization and Gantt charts clearly show the production efficiency under the select-
ed scheduling scheme. The occupancy of buffers helps to determine the best buffer size before 
each machine. The proposed scheduling verification approach can help to verify the production 
environments programmed by researchers and the scheduling results obtained by intelligent 
algorithms. 

In the future, more realistic production resources, such as automated guided vehicles, pro-
duction lines, and workers, can be considered with the help of Plant Simulation platform after 
the verification stage to further optimize the scheduling scheme obtained by programmed 
scheduling algorithms. In addition, the real-time interaction between Python and Plant Simula-
tion can be studied to check the problems of the programmed scheduling environment when the 
programmed environment is not correct. 
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