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A B S T R A C T A R T I C L E   I N F O 
Production scheduling, which directly influences the completion time and 
throughput of workshops, has received extensive research. However, due to 
the high cost of real-world production verification, most literature did not 
verify the optimized scheduling scheme in real-world workshops. This paper 
studied the verification of scheduling schemes and environments, using a 
discrete event simulation (DES) platform. The aim of this study is to provide 
an efficient way to verify the correctness of scheduling environments estab-
lished by programming languages and scheduling results obtained by intelli-
gent algorithms. The system architecture of scheduling verification based on 
DES is established. The modelling approach via DES is proposed by designing 
parametric workshop generation, flexible production control, and real-time 
data processing. The popular distributed permutation flowshop scheduling 
problem is selected as a case study, where the optimal scheduling scheme 
obtained by a deep reinforcement learning algorithm is fed into the produc-
tion simulation model in Plant Simulation software. The experiment results 
show that the proposed scheduling verification approach can validate the 
scheduling scheme and environment effectively. The utilization and Gantt 
charts clearly show the performance of scheduling schemes. This work can 
help to verify the scheduling schemes and programmed scheduling environ-
ment efficiently without costly real-world validation. 
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