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A B S T R A C T  A R T I C L E   I N F O 
This study addresses a critical challenge in industrial big data analytics for 
smart manufacturing: conventional machine learning methods often fail to 
account for data discontinuities caused by scrapped defective intermediates 
in multi-stage production processes, inadvertently treating non-conforming 
products as qualified during model training. We propose a novel process-
aware data analytics framework specifically designed for process industries, 
featuring: (1) intelligent attribute partitioning based on information flow 
discontinuity points, and (2) an ensemble modelling approach combining 
Random Forest and C5.0 Decision Tree algorithms to generate interpretable 
prediction rules with quantified feature importance rankings. Validated using 
real-world production data from a Chinese rail steel manufacturer, our meth-
odology demonstrates superior performance by explicitly incorporating pro-
cess-specific data correlations. The proposed solution effectively mitigates 
information distortion caused by scrapped intermediates while maintaining 
operational interpretability – a crucial requirement for industrial implemen-
tation. The research results increased the accuracy rate of the test set of the 
random forest experiment from 88.39 % to 92.69 %, and the accuracy rate of 
the test set of the decision tree experiment from 71.89 % to 79.15 %. Addi-
tionally, the experimental results verify that, compared with the traditional 
methods, our framework has better applicability in capturing product quality 
in the manufacturing industry when process attributes are considered. 
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1. Introduction  
The world's leading industrial countries have adopted new manufacturing production strategies, 
typical of which are the Industry 4.0 strategic initiative formulated by Germany, the Advanced 
Manufacturing Partnership of the United States, and the Made in China 2025 strategy. The core 
concept of intelligent manufacturing is a deep integration of informatization and industrializa-
tion, and its key elements are integration, analysis, and use of data. In addition to the “5V” char-
acteristics of big data, the big data associated with the process industry also have the character-
istics of correlation, process, and timing [1, 2], which means that the relatively mature data pro-
cessing methods used in internet-related analysis may not be applicable in the industrial field. 
For industrial big data, the more important problem to be solved is not one of algorithms but of 
data collection and preprocessing [3]. Therefore, it is crucial to consider the characteristics of 
industrial production data in the process of data mining [4]. 

In traditional industrial production, on-site workers guide production based on experience. 
In addition, technical personnel may use simple statistical modelling methods to analyse the 
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factors affecting the qualification rate of products. With the increasing amount of data, more 
types of data, and requirements of faster data processing, it is necessary to develop data mining 
technology more deeply. At present, the data mining method of industrial data involves selecting 
the target variable first and then taking the data of the whole production process as the inde-
pendent variable to study the relationship between the independent variable and the target var-
iable through methods such as decision tree, association rules, and neural network. The major 
challenge is that industrial production data involves many processes, and there are many corre-
lations between processes. Borchert et al. [5] validates the significance of considering produc-
tion business processes for production management analysis. To analyse the relationship be-
tween production data and the qualification rate of final products, the complexity of data must 
be reduced. The data is so complex that traditional machine learning algorithms cannot get 
meaningful analysis results, and the results deviate greatly from the actual production. The ex-
perience of workers cannot interact with the machine. The existing methods mainly improve the 
intelligence of the algorithm technically but fail to make improvements from the perspective of 
simplifying the correlation between production processes from the management level. Few stu-
dies have explored data mining methods specifically tailored to the characteristics of the process 
industry, and existing research shows limited applicability to the analysis of production data 
with complex process flows. 

This study proposes an innovative data mining methodology for industrial process analysis 
that simultaneously incorporates data correlation structures and process characteristics. The 
core innovation involves a correlation-driven partitioning mechanism for high-dimensional at-
tributes based on inter-process relationships, enabling comprehensive defect pattern extraction 
and probabilistic defect prediction. Specifically designed for process-intensive manufacturing 
sectors (e.g., steel, chemicals, pharmaceuticals), our method addresses the critical challenge of 
data discontinuity caused by substandard intermediate products, effectively preventing the 
learning of artifact patterns from interrupted data streams. The approach maintains three fun-
damental advantages: (1) holistic process integration that preserves information integrity, (2) 
systematic analysis of variable-target correlations, and (3) adaptive attribute segmentation op-
timized for production dynamics. Experimental validation using real rail manufacturing data 
demonstrates the method's superior practical utility, showing statistically significant improve-
ments in prediction accuracy compared to conventional approaches, ultimately delivering en-
hanced operational guidance value for actual production environments. 

2. Related works 
Quality control is one of the most important aims in industrial production, reducing the proba-
bility of defects is an extremely important task. Therefore, the detection and prevention of prod-
uct defects have always been a focus of researchers. With the development of intelligent manu-
facturing, the use of big industrial data to control production quality problems has gradually 
entered the field of the vision of researchers [6]. There is substantial research on manufacturing 
quality management, defect diagnosis, and defect prediction. Kovacic et al. [7] designed an im-
proved genetic programming method to predict the proportion and length of defects on rolled 
bar surfaces Perzyk et al. [8] summarized the techniques of using data mining methods to pre-
dict defects. Hsu and Chien [9] developed a hybrid data mining method to prevent defects from 
occurring in a manufacturing process and to identify and extract patterns associated with manu-
facturing defects from models. Norrena et al. [10] studied rule-based decision making and ma-
chine learning algorithms for predicting crack formation and other defects in defect-prone steel 
grades and showed the potential for defect prevention through composition optimization. Hoch-
baum and Liu [11] proposed an adjacency clustering model to predict the product defect rate in 
integrated circuit manufacturing and improve production efficiency 
 Building upon defect prediction models, various production optimization methods have been 
developed to enhance product quality in steel manufacturing. Vukelic et al. [12] built predictive 
models and performed process optimizations to maximize dimensional accuracy and surface 
quality. Chongwatpol [13] used big data to diagnose defects and causes of changes in the produc-
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tion process and used control charts, defect costs, and defect prediction scores based on cluster-
ing to reduce defects. Lee et al. [14] used fuzzy association rule mining and a recursive process 
mining algorithm to identify the relationship between production process parameters and prod-
uct quality. Akarwal et al. [15] applied correlation association rules to determine the optimal 
processing conditions for three non-traditional machining processes: electrochemical machin-
ing, ultrasonic machining, and electrical discharge machining. Breznikar et al. [16] proposed to 
optimize and regulate the pouring temperature during the casting process. Ciarapica [17] adopt-
ed association rules to identify refinery environmental risks and take corrective measures. Li et 
al. [18] proposed a self-organizing radial basis function neural network to predict output and 
optimize operation. The above research used machine learning method to study quality control. 
Quality management has transitioned into the era of machine learning analysis from the previ-
ous era of traditional statistical analysis. 
 Decision tree and random forest are classification algorithms in machine learning, which 
have high applicability in the field of production quality management. The decision tree algo-
rithm provides interpretable decision rules for the root cause of high or low product pass rate. 
Decision tree method is one of the classical methods to predict industrial production quality 
with process attributes. Irani et al. [19] first applied the decision tree model to the prediction of 
the quality qualification rate of industrial products. Keswani [20] applied a classifier based on 
decision trees for inventory management and regarded the number of defects as a fuzzy variable 
to predict seasonal demand. Li et al. [21] adopted the improved C5.0 decision tree algorithm to 
optimize production process parameters. The decision tree algorithm is widely used also in op-
timizing process parameters and extracting classification rules. The random forest algorithm is 
an integrated learning method for multiple decision trees; it has strong anti-noise ability and can 
accurately predict the importance of attributes. Grdinaru et al. [22] emphasized that the random 
forest classification algorithm classifies statistical units based on decision trees and has a rela-
tively low error rate for identifying complex elements. Ozbalci et al. [23] validated the ad-
vantages of random forest algorithms in process industry data analysis. Wang et al. [24] ana-
lysed large-sized data using the random forest optimization algorithm, selected key production 
factors through information gain and predicted product quality by using sensitivity analysis, and 
verified the applicability of the random forest algorithm in the problem of product quality pre-
diction in the process industry. Esteve et al. [25] discussed the advantages of random forest al-
gorithm in processing high dimensional data of freely disposed hulls and proposes a new meth-
od to evaluate the importance of input variables. 
 The studies above used data mining methods to analyse industrial data, but the studies used 
data mining methods to directly model and ignored the process and correlation in the actual 
production. The relationship between each process is intricate, and the high-dimensional pro-
duction process data with complex information often make the mining results inaccurate [26]. 
There is some internal correlation between the data in the process industry. Considering the 
correlation between processes is a top priority of industrial big data mining [27]. Wei et al. [28] 
identified key limitations in handling the inherent diversity and dynamics of complex production 
workflows, subsequently developing a simulation model that accurately represents real-world 
manufacturing processes. Yao and Ge [29] proposed a method for quality prediction of big data 
in the process industry. Negoita and Borangiu [30] incorporated business processes into de-
mand forecasting models, merging process automation techniques with inventory management 
to enable knowledge-intensive service discovery. Novak et al. [31] identified the challenges of 
making informed decisions that positively impact business processes and proposed a new ap-
proach to integrating business processes with requirements management. Ding et al. [32] pro-
posed a latent sequence correlation calculation model for anomaly detection of industrial data 
series. However, these studies aimed at the analysis of the time series of the whole production 
process of a certain process or a certain machine. Although the correlation of industrial data was 
considered, the overall analysis method was not provided from the perspective of the total fac-
tors of the whole production. 
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3. Research model 
3.1 Problem description 

Industrial production data is generated sequentially along the manufacturing process, often in-
volving intermediate products that undergo multiple processing stages before becoming final 
outputs. Process industry data is characterized by its large volume, high dimensionality, and 
tight integration with business workflows, posing significant challenges for industrial data anal-
ysis. In industrial production, products are divided into multiple intermediate items manufac-
tured across different processes. Each processing workshop is responsible for producing specific 
intermediates, which must pass quality inspection. Non-conforming intermediates are scrapped 
and do not proceed to subsequent workshops, resulting in the termination of their correspond-
ing production data streams. All workshops consolidate their production data at the corporate 
level, including data from both qualified and non-conforming intermediates. However, in prac-
tice, the qualification rate of intermediates is routinely reported as 100 %, while machine learn-
ing models inadvertently train on data from defective intermediates. These non-conforming 
items, though excluded from the final product, participate in the machine learning analysis of 
final product data. This information discontinuity caused by scrapped intermediates may signifi-
cantly degrade the quality of knowledge discovery. 
 In industrial production, product processing is divided into M stages, generating K intermedi-
ate products. Each intermediate undergoes N processing steps and must pass quality inspection. 
If a batch of intermediates achieves a 100 % qualification rate, it proceeds to the 𝑁𝑁 + 1 stage. If 
the qualification rate is below 100 %, the non-conforming items are removed and scrapped, and 
the remaining batch continues to subsequent stages until the final product is completed. The 
process flow is illustrated in Fig. 1. 

 
Fig. 1 Product manufacturing data flow chart 
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 Dynamic data is generated at each production stage. However, the scrapping of non-
conforming items during quality inspection leads to information discontinuities. Specifically, 
some dynamic data generated from the first to the Nth stage becomes irrelevant to the final 
product qualification rate. Moreover, all intermediates entering the 𝑁𝑁 + 1 stage are qualified, 
effectively optimizing the qualification rate to 100 %. The data flow is segmented at the quality 
inspection node, meaning that production data from non-conforming intermediates does not 
proceed to subsequent stages. 
 Traditional data mining methods are ill-suited for analysing process-oriented industrial pro-
duction data due to these discontinuities. The goal of this study is to enable more accurate indus-
trial data analysis by preventing models from learning spurious relationships between irrele-
vant independent variables and target variables. To address the flow and correlation character-
istics of big industrial data, we propose a process attribute-partitioning based data mining 
method tailored for process industries. Implementing attribute partition in the production sys-
tem provides substantial operational advantages, including improvements in production effi-
ciency and product qualification rates (for details, see the discussion of experimental results in 
Section 4.3). Crucially, this method requires only the minimum organizational investment. For 
instance, enterprises need to increase their investment in business process integration to collect 
key production data that affects the qualification rate of each intermediate product. Strengthen 
the statistical norms of production data, etc. 

3.2 Defect prediction model of process industry products 

Due to the possibility of defective intermediate products being scrapped during industrial pro-
duction, data flow interruptions can lead to the loss of correlations between data. To address 
this, we propose a method of segmenting data based on the business process to reduce the com-
plexity of industrial data mining and avoid using interrupted data for machine learning. Below, 
we describe our proposed industrial data mining method that considers process and correlation 
data characteristics. 
 The method consists of three main stages. The first stage is data preprocessing, which in-
cludes data cleaning, discretization of quality inspection data for intermediate products, con-
verting industrial data into a learnable format, and sampling and partitioning the dataset. The 
second stage involves using attribute partitioning methods, based on the location of information 
flow interruptions in the quality inspection process. The third stage uses the Random Forest 
algorithm, which is an ensemble learning method based on decision trees. This algorithm is 
known for its robustness against noise and its ability to accurately predict the importance of 
attributes. The classification rules generated by the C5.0 decision tree algorithm are easy to un-
derstand and reflect the production process sequence more accurately. Therefore, based on the 
characteristics of rail production data, we perform decision tree and Random Forest experi-
ments on the partitioned data, generating a rule set that guides actual production and obtaining 
a ranking of attribute importance. C5.0 decision tree algorithm transparent interpretability 
(white-box model) enables industrial practitioners to easily extract decision rules and efficiently 
handle high-dimensional data with mixed numerical and classification features. The algorithm 
demonstrates rapid training convergence, which proves essential for efficient model iteration 
and refinement in production environments. Random Forest algorithm is an integrated ap-
proach that can handle thousands of dimensions of features, has high parallelization efficiency, 
and is more suitable for process industry data analysis with high data dimensions. The algorithm 
selected in this paper strikes a balance between interpretability (for operational guidance) and 
scalability (for high-dimensional process data). 
 The attribute partitioning method divides input variables into data blocks for mining, with 
each block corresponding to a target variable. This method is divided into four steps. The first 
step is to arrange all attributes Di in sequence according to the production process. The second 
step is to traverse each attribute Di to determine if it belongs to the quality inspection process. 
The third step is to label the attributes, if it belongs to the quality inspection procedure, label it 
as Dj. The fourth step is to divide the data into N parts based on the location of Dj, and construct 
decision trees for N stages. Attribute partitioning is effective for production data with multiple 
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process steps or large datasets, where the fitting dimension N is often very high. The random 
forest algorithm utilizes Bagging and random feature selection to reduce variance, ensuring that 
the test error is very close to the training error. Decision trees rely on pruning techniques to 
alleviate the problem of overfitting. Adnan and Islam have verified that the set of 100 decision 
trees achieves a prediction accuracy of over 80 % [33]. In the manufacturing industry, the pro-
duction process usually involves 5 to 8 intermediate products. The proposed attribute division 
method can maintain robust predictive performance even when N is large and is particularly 
suitable for multi-stage production systems. The target variable is the qualification rate decision 
data, and the independent variable is the dynamic data from each block. Each decision tree re-
flects the rules of different stages, and the leaf nodes represent the probabilities of each result 
for the target variable. Based on the result from the root node of the previous decision tree, 
resampling is conducted to obtain the corresponding probability samples, which are then used 
to construct the second decision tree. Integrate the decision trees at each stage to obtain the 
product defect rule set and the product qualification rate. 
 Table 1 presents the process of the defect product prediction algorithm for process industries 
based on Random Forest. 

Table 1 Defect product prediction algorithm for process industries based on Random Forest 
Algorithm: Product defect prediction algorithm of process industry based on random forest 
Input: training set 𝐺𝐺 = {(𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2), … , (𝑥𝑥𝑤𝑤 , 𝑦𝑦𝑤𝑤)}; 

Among, 𝑥𝑥𝑖𝑖 ∈ 𝑥𝑥 ⊆ 𝑅𝑅𝑛𝑛,  𝑦𝑦𝑖𝑖 ∈ 𝑦𝑦 = {1,2}, 𝑖𝑖 = 1,2, … ,𝑤𝑤; 
Feature space D; 
Number of decision trees in a random forest t; 
Random characteristic number; 
Business process; 
Number of training epochs (data flow interruption nodes) N. 

Output: Visualize attribute importance and prediction accuracy 
Course: 
1: Data preprocessing 
2: Sorted according to the business process, it is divided into N phases 
3: The feature space D is divided into N feature subsets according to business processes 𝑁𝑁 , N∈ {1,2, … ,𝐾𝐾} 
4: for n=1,2,...,N do 
5: Bootstrap Sampling: For each tree t∈{1,2,...,T} 

A sample is extracted from 𝐺𝐺𝑁𝑁 and a subdataset is generated, generate a subdata set 𝐺𝐺𝑁𝑁𝑁𝑁 
6: Generate a decision tree for each 𝐺𝐺𝑁𝑁𝑁𝑁 

When each node splits, m features are randomly selected from 𝐷𝐷𝑁𝑁, the optimal splitting point is selected, and 
the splitting is repeated until the stop condition is met 
7: Integrated model: Combine T trees into a random forest 
8: end for 
Output: Visualize attribute importance and prediction accuracy 

 As shown in Fig. 2, Experiment 1 and Experiment 2 in the figure are the traditional defect 
prediction algorithm and the improved defect prediction algorithm respectively. The detailed 
experimental process is described in Section 4. 

 
Fig. 2 Flow chart of industrial data mining method based on attribute partitioning 
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4. Results and discussion 
4.1 Experiment design 

Regarding experimental design, we first divide all attributes according to the information inter-
ruption position in the production process and then use the machine learning algorithms to ana-
lyse the industrial production data. 
 Experiment 1: Data mining method without considering data correlation of the process in-
dustry. The decision tree was constructed, and the random forest experiment was carried out to 
obtain the rule set and the ranking of attribute importance that affected the rail defects. 
 Experiment 2: Data mining method considering data correlation of process industry. In the 
first stage, the data were partitioned according to the relevance of the production process. In the 
second stage, the decision tree was constructed in blocks, and the random forest experiment 
was carried out. In the third stage, the decision tree was connected to obtain the rule set, and the 
ranking of attribute importance was obtained by the random forest experiment. 
 By comparing Experiment 1 and Experiment 2, the effectiveness of the data mining method 
based on attribute partitioning is verified. 
 In view of the correlation characteristics of industrial big data, this paper takes the actual 
production data of a large domestic steel mill as an example to preprocess and analyse the data. 
The random forest algorithm is used to sort the importance of attributes, and the C5.0 decision 
tree algorithm is used to construct the rule set. The model was established and evaluated by two 
methods, and the results of traditional data mining (Experiment 1) and those of a data mining 
method based on production process attribute partition (Experiment 2) were compared. The 
research process was as follows: (1) data preprocessing, including data cleaning and data trans-
formation. (2) In Experiment 1, the C5.0 decision tree algorithm was used to mine the relation-
ship between all sample data and target variables, and a decision tree rule reflecting whether 
there are some defective rails was obtained. The random forest algorithm was used to sort the 
importance of attributes. (3) In Experiment 2, attributes were divided into two parts according 
to the quality inspection procedure, and the C5.0 decision tree algorithm was used to obtain the 
two-stage decision tree rules. The random forest algorithm was used to sort the importance of 
the attributes of the two stages. The two decision trees obtained were connected to generate a 
complete rule set. (4) The results of Experiment 1 and Experiment 2 were compared and ana-
lysed, and the characteristics and advantages of industrial data mining were summarized. 
4.2 Experiment process and results 
Taking the industrial production of iron and steel enterprises as the research context, this study 
selected the real data of rail production of a large steel mill in China as the research object, pre-
dicted the probability of rail defects, and analysed the causes of defects. The data are the rail 
production data of the whole year of 2018, with 7,353 samples in total. For controlling variables, 
we selected the processing data of U75V rail in 2018 in the steel mill, 2,383 effective samples 
and 93 attributes were obtained. One sample corresponds to one batch, and the production op-
eration process of each batch is the same (a batch is the minimum production unit for rail pro-
duction). The sample includes 44 attributes, including refining heating time, temperature before 
VD, temperature after VD, R(C)L (rail carbon content distance lower boundary), qualification 
rate of slab, and qualification rate of rail, which covers the whole production process from 
steelmaking to finished product. The rail processing flowchart is shown in Fig. 3. 

 
Fig. 3 Rail manufacturing process 
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The following is the data preprocessing process. 
Data cleaning 
In the original data set used in this study, there were many unrecorded entries, that is, missing 
values. However, for attributes such as qualification rate of slab and qualification rate of rail, 
missing values reflect the actual production conditions and exist as target variables in this study. 
If the missing values are artificially filled, the actual production situation will be changed, result-
ing in poor performance of the classification model. In this study, we deleted the entire row of all 
variables that could not be filled. Heating time, soft blowing time, temperature after VD, and oth-
er attributes correspond to data collected in the actual production process, which can be filled 
after analysis. Descriptive statistics were used to determine the method to fill in the missing 
values. The mean value was used to fill in the case of symmetric data distribution, and the medi-
an value was used to fill in the case of skewed data distribution. 
 Data cleaning in this study also includes processing outliers and removing noise in the data, 
which was performed by identifying outliers through box separation. Noise outliers were re-
moved and smoothed by the box mean method. We deleted the entire row of all variables that 
could not be processed. 
Data discretization 
The classification model used in this paper can deal with continuous independent variables, but 
the target variables must be discrete. Therefore, it is necessary to discretize the target variables of 
continuous attributes in the experimental data, including qualification rate of rail and qualification 
rate of slab. Data discretization methods include box discretization, histogram discretization, en-
tropy discretization, and clustering discretization. In this paper, the qualification rate of rail is di-
vided into two categories: qualified rate of 100 % and qualification rate of less than 100 %, that is, 
whether the sample contains defective rail or not. When the qualification rate of the slab is taken 
as the target variable, the samples with 100 % qualification rate and the samples with less than 
100 % qualification rate are taken as labels to discretize the continuous attributes. 
Data conversion 
Data transformation transforms data into a new form that is easier to mine. We conducted the 
following operations. (i) Attribute transformation: generalize the date to minutes and seconds. 
(ii) Attribute construction: construct new attributes such as temperature difference and time 
interval, etc., and add the new attribute to the attribute set. (iii) Standardization: convert attrib-
ute data into distance between upper and lower bounds according to its optimal range. The con-
tent of chemical elements in this paper has an industry standard range, so we converted all ele-
ment content into distance between upper and lower bounds. Through attribute transformation, 
new attribute construction, and the introduction of the distance between element content and 
boundary, the information content of data can be extracted to the extent possible. 
Sampling and partitioning of datasets 
If the uneven distribution of target variables makes it difficult for the decision tree and random 
forest algorithms to ensure accuracy, the performance of the classifier will be biased towards 
most classes. To prevent a few types of oversampling from causing overfitting, this study adopts 
a combination of undersampling and oversampling to process unbalanced data. In order to en-
sure the objectivity of the results, the data were divided into training sets and test sets, account-
ing for 80 % and 20 %, respectively. 

4.2.1 Data mining method without considering the correlation of rail production data 

Experiment 1: Random forest algorithm modelling 
Taking qualification rate of rail as the target variable, variables include two labels: qualification 
rate of 100 % and qualification rate of less than 100 %; other attributes are independent varia-
bles. The importance of attributes calculated by the model is shown in Fig. 4. The top 10 attrib-
utes of importance involve several stages of refining, vacuum degassing, continuous casting, and 
hot rolling. The ranking of attribute importance obtained is more accurate than the traditional 
statistical analysis method. The attributes ranked in the top ten in importance belong to multiple 
production stages and belong to different production workshops. It is impossible to accurately 
determine the ranking of important attributes that affect the qualification rate of rails. 
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Fig. 4 The attribute importance degree that affects the qualification rate of rail 

Experiment 1: Decision tree algorithm modelling 
Qualification rate of rail after discretization was taken as the target variable. All the remaining at-
tributes, which involve several stages of production from refining to rail quality inspection, were 
independent variables. The mapping diagram of the decision tree modelled by the C5.0 decision 
tree is shown in Fig. 5. With node 96 as an example, the detailed diagram is shown in Fig. 6. 

 
Fig. 5 Experiment 1: Decision tree mapping graph 

 
Fig. 6 Details of the decision tree for node 96 

 The decision tree rule obtained is illustrated in Table 2. Rule 1: The batch contains defective 
rails with a probability of 100 %. Rule 2: The batch contains defective rails with a probability of 
86.84 %. In the obtained decision tree, each path corresponds to a rule, and leaf nodes reflect the 
probability of whether a batch of rails contains defective products. 

The decision tree results of Experiment 1 obtained the production operation rules and corre-
sponding probabilities of the batch containing defective rails, and the important attributes af-
fecting the occurrence of defects were obtained from the random forest experiment results. Be-
fore the experiment, the data were divided into training sets and test sets. The accuracy of the 
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results of the traditional experiment (Experiment 1) is shown in Table 3 The model accuracy is 
greater than 70 %, which proves that the experiment has credibility. Although the experimental 
results were obtained based on a large amount of data and the accuracy was credible, the corre-
lation and process of the data were not considered. The results were obtained based on all the 
data without attribute partition, and the influence of the interrupted data on the results was not 
excluded. 

Table 2 Decision tree rule enumeration  
Decision tree leaf node Process rules Result, Probability 
1.node#15 If 0.89 =< qualification rate of slab <=1, TD(O-SB) <= 64, 

R(V)L <= 0.01, casting time <=50, LF refining time > 65, 
RO(V)L > 0.001, soft blowing flow <=65, and tempera-
ture before VD > 1551 

The batch contains 
defective rails, 100 

2.node#96 If 0.89 =< qualification rate of slab <=1, TD(O-SB) > 64, 
R(S)U <= 0.023, and R(C)L <= 0.04  

The batch contains 
defective rails, 86.84 

 
Table 3 The accuracy rates of the two models 

Experiment Training set (%) Test set (%) 
Experiment 1: random forest algorithm modelling 98.08 88.39 
Experiment 1: decision tree algorithm modelling 82.48 71.89 

4.2.2 Data mining method considering the correlation of rail production data 

Based on Experiment 1, we proposed to divide attributes based on the production process, and 
conduct data mining for each piece of data after division and then combine the obtained results 
to find the rules that could not be found in Experiment 1. 
 We arranged all the attributes according to the rail production process, as shown in Fig. 7.  

 
Fig. 7 Data flowchart of rail manufacturing 

  
After examination of all the attributes, it is found that the attributes “qualification rate of 

slab” and “qualification rate of rail” are the data generated by quality inspection. The independ-
ent variables of Experiment 1 were divided into two parts in Experiment 2 with “qualification 
rate of slab” as the node. The first part of the data is from refining to slab quality inspection pro-
cess in the production data; the second part of the data is between hot rolling and rail quality 
inspection process production data. First, the discretized “qualification rate of slab” was taken as 
the target variable of the first stage, and all variables of the first stage were taken as input. 
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Experiment 2: Random forest algorithm modelling 
The random forest algorithm was used to get the ranking of attribute importance in the first 
stage. The results of the first stage show the ranking of importance of attributes that affect the 
qualification rate of slab. The top 10 attributes are shown in Fig. 8. The variables of the second 
stage and “qualification rate of rail” were taken as independent variables, and the discretized 
qualification rate of rail was taken as the target variable. The random forest algorithm was used 
to get the ranking of the importance of attributes of the second stage. The top 10 attributes are 
shown in Fig. 9. The results show the order of attribute importance of the influence of attributes 
from hot rolling to rail quality inspection on qualification rate of rail. 

    
Fig. 8 The attribute importance degree that affects the qualification rate of slab 

 
Fig. 9 The attribute importance degree that affects the qualification rate of rail 
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Experiment 2: Decision tree algorithm modelling 
− The first stage experiment 

The discretized “qualification rate of slab” was taken as the target variable of the first stage, 
and all the variables of the first stage were taken as independent variables. The C5.0 decision 
tree algorithm was used to obtain the rule mapping diagram of the first stage decision tree, as 
shown in Fig. 10. With node 86 as an example, the detailed diagram is shown in Fig. 11. 

 
Fig. 10 Decision tree mapping graph of the first stage 

 
Fig. 11 Details of the decision tree for node 86 

− The second stage experiment 
The target variable of the second stage was the discretized “qualification rate of rail”, and all the 
attributes of the second stage and “qualification rate of slab” were taken as independent varia-
bles. In the C5.0 decision tree algorithm, the largest information gain rate among independent 
variables was selected as the root node. The experimental results prove that the root node of 
the second stage decision tree is “qualification rate of slab”. The “qualification rate of slab” was 
discretized into two categories: “1” (the batch containing defective rails) and “2” (the batch 
does not contain defective rails). All the leaf nodes of the decision tree in the first stage reflected 
the probability of two categories. Therefore, according to the probability of the two categories, 
samples of the corresponding proportion are selected from the second stage to construct the 
decision tree of the second stage. The root node of the two-stage decision tree is connected with 
the corresponding leaf node to get the rule set (not a new decision tree). Since the number of 
branches of the decision tree grows exponentially at this time, only the leaf nodes of the two 
categories “1” and “2” of the decision tree in the first stage are connected to the decision tree in 
the second stage with the probability of occurrence of more than 80 %. 

In Fig. 12, leaf node 84 in the first stage is taken as an example. The probability of category 
“2” of the “qualification rate of slab” of this node is 100 %. Therefore, 1,000 samples from cat-
egory “2” of qualification rate of slab are selected, and only the attributes of “qualification 
rate of slab” and the attributes of the second stage are retained for the decision tree experi-
ment. The decision tree mapping diagram is shown in Fig. 13. 

The results of Experiment 2 were two-stage decision tree rules after the attribute division. 
The results obtained after integrating the two-stage rules are listed in Table 4. The set of pro-
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duction operation rules that affect the high defect rate of rail and the probability of each path 
correspondence are obtained. The results of the random forest experiment show that the im-
portant attributes affect the defects of rail after attribute division. Before the experiment, the 
data were divided into training sets and test sets. The accuracy of Experiment 2 is shown in 
Table 5. The accuracy of Experiment 2 is greater than 70 %, which proves the credibility of 
the experiment. The results exclude the influence of interruption data and prove that the at-
tribute partition is scientific and reasonable. 

 

 
Fig. 12 Details of the decision tree for node 84 

 
Fig. 13 Decision tree mapping graph of the second stage 

 
Table 4 Decision tree rule enumeration 

Decision tree leaf node Process rules Result, Probability 
1.a (node#84)+b If △T > 21, pull speed > 0.64, RO(C)L <= 0.05, casting 

time > 38, TD(O-SB) > 58, casting time <= 63, 
R(Mn)L <= 0.24, and R(V)L <= 0.006 

Containing defective 
rails, 92 

2.a (node#81)+b If △T > 21, pull speed > 0.64, RO(C)L > 0.05, 
R(Mn)L > 0.24, R(V)L > 0.004, and R(P)U > 0.018 

The furnace is all 
qualified, 100 

 
Table 5 The accuracy rates of each model 

Experiment Training set (%) Test set (%) 
The first stage: random forest algorithm model 98.59 93.46 
The second stage: random forest algorithm model 95.4 92.69 
The first stage: decision tree algorithm model 89.44 72.17 
The second stage: decision tree algorithm model 78.78 79.15 

4.3 Experiment results discussion 

Our data consists of 42 attributes, which are generated by 8 production processes and 2 produc-
tion workshops. Due to the complexity of the production processes, the data dimension is high, 
spanning multiple production processes and even belonging to multiple production workshops. 
Therefore, there is a high demand for data processing technology. 
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 The improved defect prediction model for process industrial products has obtained the at-
tribute importance order and defect prediction rule set based on attribute division according to 
the business process. The processing workshop can obtain the integrated attribute importance 
ranking and production guidance rule set applied to each intermediate product production pro-
cess. Experiment 2 shows that when the temperature difference, pull speed, carbon oxide con-
tent, manganese content, vanadium content, and phosphorus content exceed the critical thresh-
old, all rails are qualified. However, when the carbon oxide content or manganese content falls 
below the critical threshold, the rail qualification rate significantly decreases. Comparing the 
algorithm accuracy of Experiment 1 and Experiment 2, it can be observed that the test set accu-
racy of the random forest experiment increased from 88.39 % to 92.69 %, and the test set accu-
racy of the decision tree experiment increased from 71.89 % to 79.15 %. The machine learning 
accuracy has been significantly improved after attribute division. 
 Excluding the influence of external factors on the accuracy of experiment, such as environ-
mental factors (temperature, humidity, precipitation, industrial pollution) which can cause sys-
tematic deviations in sensor data, and the coupling effect of the interaction between environ-
mental and industrial parameters, the accuracy of machine learning models will be further im-
proved. We leave the deviations caused by these external factors for future research. Our im-
proved algorithm guides enterprise practices, and at the same time, enterprises should cooper-
ate with the optimization of data integration and process collaboration. For example, establish a 
unified data platform to avoid the problem of information silos. Formulate data governance 
strategies (such as the ISO 8000 standard) and deploy automated cleaning tools to achieve data 
standardization. Processes such as quality inspection and handling of non-conforming products 
involve multi-departmental collaboration. Traditional linear processes are difficult to adapt to 
the dynamic requirements of machine learning models. It is recommended to adopt a modular 
design and decompose the processes into configurable sub-modules. 
 In conclusion, in actual production, it is necessary to consider whether industrial data has 
process relevance and to divide attributes according to the quality inspection procedures and 
the sequence of production processes. Machine learning is then applied on this basis to identify 
issues. The experimental results prove that the defect product prediction method proposed in 
this study is more suitable for industrial big data mining. The management insights obtained 
based on actual production data have more guiding significance for actual production. 

5. Conclusion 
This study has developed a new data analysis framework for the process industry. This frame-
work systematically classifies the attributes of process properties to alleviate the data interde-
pendence effect, integrates block-based decision trees and random forest models to generate 
interpretable defect prediction rules, and identifies key quality attributes through feature im-
portance analysis. Experimental validation using rail production data from a major Chinese steel 
mill demonstrates significant performance improvements: the proposed attribute-partitioning 
approach increases random forest test accuracy from 88.39 % to 92.69 % and decision tree ac-
curacy from 71.89 % to 79.15 %. The framework reveals actionable quality rules - when the 
temperature difference, pull speed, carbon oxide content, manganese content, vanadium content, 
and phosphorus content exceed the critical threshold, all rails are qualified. While, when the 
carbon oxide content or manganese content falls below the critical threshold, the rail qualifica-
tion rate significantly decreases.  
 By transforming high-dimensional correlated production data into process-aligned modular 
datasets, the framework demonstrates superior applicability for process-driven industries com-
pared to conventional methods, delivering both analytical precision and interpretable opera-
tional guidance that bridges theoretical data mining with industrial practice. In the future, the 
defect prediction problem of multiple products can be explored, and the data analysis methods 
for products with overlapping processes can be considered. 
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