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A B S T R A C T  A R T I C L E   I N F O 
Unlike mass-volume products, custom-made products provide multiple options 
at the ordering stage and therefore require a system flexible enough to accom-
modate these needs. This study developed a worker-balancing algorithm for 
custom-made products that enable equitable workload distribution across dif-
ferent numbers of workers. The key variables considered are task duration, the 
number of workers, and the type and complexity of the tasks involved in pro-
ducing custom-made garments. The proposed algorithm is designed as an op-
timized production assignment by sequentially assigning the number of work-
ers and tasks for each production operation. The main steps of the algorithm 
are as follows: (1) calculate the basic pitch time (BPT); (2) determine the num-
ber of workers and the time per worker required for the highest-level task; and 
(3) redistribute the workload between the highest-level task and the second-
highest-level task. The algorithm was applied to generate production assign-
ments for scenarios involving four to seven workers. The outcomes of the pro-
posed method were compared with the current five-worker assignment in use. 
The results show that balance efficiency increased from 69.9 % to 83 %. To 
further validate the algorithm, a production process was modelled and simu-
lated using a discrete-event systems simulation tool. The simulation confirmed 
the reliability of the balance efficiency, as labour utilization closely matched the 
calculated balance efficiency. This study is significant because it addresses 
workload balancing in small-scale, custom-made garment production. Moreo-
ver, it offers a practical approach to distributing task durations that accounts 
for both worker competencies and the specific nature of the tasks performed. 
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1. Introduction 
In recent years, there has been a notable shift toward sustainability and customization within the 
apparel industry. Companies are increasingly adopting strategies to offer customized clothing, al-
lowing them to differentiate their products while addressing environmental concerns. This trend 
effectively circumvents traditional issues related to excess inventory, which not only strains re-
sources but also contributes to significant waste, thereby promoting a more sustainable fashion 
ecosystem. The rise of custom-made garments has been driven by a decline in the sewing work-
force and a diminishing base for mass production, leading companies to embrace miniaturization 
and specialized production techniques. Such adaptations enable a transition to a production sys-
tem characterized by multi-product, small-volume outputs. Consequently, this shift demands in-
novative approaches to production line design and management aimed at enhancing efficiency, 
reducing costs, and maintaining competitiveness. 
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Recent research highlights the critical importance of sophisticated production management in 
this evolving landscape. Effective production management involves careful measurement of 
working times and the strategic organization and analysis of task processing. The objective is to 
create an optimal work environment that minimizes inefficiencies, reduces delays, and decreases 
defects, ultimately boosting productivity [1]. Historically, studies have largely focused on line bal-
ancing within mass production frameworks, aiming to optimize the output of ready-to-wear gar-
ments [2-8]. However, there is an urgent need for research that specifically addresses optimal 
process allocation in bespoke clothing production, particularly concerning individual worker skill 
levels in a pre-order context. This approach not only aligns production more closely with actual 
market demand but also enhances resource utilization and worker capabilities, paving the way 
for a more sustainable and responsive manufacturing process. 
 The fashion industry's pivot toward custom-made garments presents unique challenges and 
opportunities in production management. This study introduces an innovative worker-balancing 
algorithm tailored specifically to address these dynamics. The essence of this algorithm lies in its 
capacity to adeptly allocate tasks among a variable number of workers, ensuring that each indi-
vidual is assigned duties that align with their skills and the demands of the production schedule. 

Central to this approach is the consideration of several critical factors: the task time required 
for each garment component, the fluctuating number of workers, and the varying types and diffi-
culty levels of tasks. The algorithm is designed to optimize production efficiency by systematically 
assigning the right number of workers to each task, based on a detailed analysis of these factors. 
This method promises to enhance the productivity of custom garment production and ensures 
smoother operational flow, reducing bottlenecks and optimizing resource use. 

By implementing this algorithm, manufacturers are equipped to maintain high efficiency while 
adapting to the bespoke needs of their clients. This study seeks to demonstrate the algorithm’s 
effectiveness in real-world scenarios, thereby providing a robust framework for decision-makers 
in the apparel industry to enhance their operational strategies. 

2. Literature review 
The Assembly Line Balancing Problem (ALBP) in mass production systems has been a focus of 
study since the 1970s, leading to the development of empirical problem-solving methods [9-17]. 
The ALBP can be categorized into two main types: minimizing the number of workstations given 
fixed tasks, task times, and precedence relationships, and minimizing task times for assigned 
workstations. In mass-produced clothing, production levels tend to be consistent from day to day, 
with tasks structured to maintain flow and reduce delays, thereby balancing the time required for 
individual tasks along the production line. Once a production assignment is established, it often 
remains unchanged for extended periods. Moreover, traditional mass production approaches do 
not account for variations in worker skill levels when determining task times, as there is typically 
a fixed arrangement of workers assigned to each task. This model operates under the assumption 
that sufficient personnel and equipment can be allocated to bottleneck tasks, often leading to time 
inefficiencies. 

The most widely adopted method for addressing the ALBP in mass production is the Ranked 
Position Weighted (RPW) method [18-20]. This approach involves assigning a cycle time, then 
calculating the number of required workstations or vice versa. With the advent of flexible produc-
tion systems in 2000, researchers shifted their focus to solving the ALBP within flexible manufac-
turing contexts, which differ significantly from mass production systems, leading to the creation 
of analytical methods for mixed-model ALBPs [21, 22]. There is also research on optimizing in-
dustrial decision-making and operational production by applying genetic algorithms [23, 24]. 

In the manufacturing system relevant to this study, task times among workers are assumed to 
vary according to a statistical distribution due to automation in the equipment. While statistical 
methods are effective in mass production environments characterized by repetitive tasks, custom 
garment manufacturing presents unique challenges, as task times can differ significantly based on 
individual worker skill levels. Consequently, a different approach to the ALBP is warranted. Typi-
cally, a small custom garment production process involves three to five workers and focuses on 
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fulfilling a single order. Therefore, further research is essential to develop efficient and cost-effec-
tive production systems for custom garment manufacturing. Integrating techniques from mass 
production systems could yield optimal solutions for producing custom-made garments. 

Given that custom-made garments are produced on demand, daily production levels can vary 
significantly. This variability arises from differences in fabric and design for each individual gar-
ment, necessitating a system that is sufficiently flexible to accommodate these changes. Enhancing 
productivity and quality in custom-made garment production requires efficient process organiza-
tion by aligning production factors—such as machinery and personnel—with specific orders and 
configuring task orders accordingly. Generally, custom-made production relies on a small number 
of workers, each performing multiple tasks with various tools. Thus, it is critical to allocate tasks 
based on the functional skill levels of the workers. 

To analyse the efficient production of custom-made clothing, Choi [25] developed twelve com-
binations of worker and equipment numbers, establishing balanced efficiency based on Pro-
cessing Time (PT) discrepancies among workers in each combination. However, Choi's study lacks 
specificity regarding the task allocation process within these combinations. Production efficiency 
can vary significantly in garment manufacturing, influenced by the method of task allocation and 
equipment layout, even when the number of workers and machines is constant. Recent advance-
ments in line balancing for clothing production have also incorporated artificial intelligence [26], 
highlighting the ongoing evolution in this field. 

3. Research methodology  
3.1 Development process of a worker-balancing algorithm 

The development process for the worker-balancing algorithm began with a careful selection of 
specific custom-made garment items and their corresponding manufacturers. This initial step en-
sured that the study remained focused on real-world applications where increased production 
efficiency could offer significant benefits. The primary case study involved on-demand production 
of custom-made formal shirts, providing a clear and controlled environment to validate the algo-
rithm’s efficacy, with the potential for broader application across the custom garment industry. 

Following the selection of garment types and manufacturing partners, the algorithm was im-
plemented, leading into an extensive data collection phase. This critical phase involved gathering 
detailed data essential for optimizing production assignments. The collected data included: 

• Garment Production Requirements: Information on the types of cuts required for each gar-
ment. 

• Machine Resources: The specific types and quantities of sewing machines available in the 
production process. 

• Worker Resources: The number of workers, along with their individual skill levels and pro-
ficiencies. 

• Task Specifications: Type, difficulty level, and estimated completion time for each task, or-
ganized by process step. 

This data provided a foundational understanding of the resources and variables involved, al-
lowing the algorithm to balance worker assignments effectively. The structured approach enabled 
the application of the algorithm within a controlled, data-rich environment and allowed for re-
finement and adaptation based on real-time insights. 

This methodical development process not only enabled the algorithm to demonstrate clear im-
provements in efficiency but also provided evidence of its adaptability. Although the primary fo-
cus was on formal shirts, the principles and techniques developed show promising flexibility, 
making the algorithm applicable to a broad range of custom-made clothing products. This adapt-
ability enhances the findings’ relevance and scalability, offering a practical solution to meet the 
industry’s diverse and evolving needs. 
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Standard process analysis of custom-made shirts of the target company 

This study focuses on custom-made men's formal shirts manufactured on demand by the target 
company. The shirt design, shown in Fig. 1, involves an eight-hour working day with a team of five 
workers: one in cutting, two in sewing, one as an assistant, and one in finishing. The sewing pro-
cess is divided into two stages: preparation and pre-processing followed by assembling and part-
making. Specific tasks within these stages are assigned to lock-stitch and specialized sewing ma-
chines based on production requirements. 

The company operates on a straight-line production system adapted to a multi-product, small-
volume model, which requires workers to perform various tasks. Each worker moves between 
equipment stations according to the specific demands of the production process. Fig. 2 illustrates 
the target manufacturer’s worksite layout, where individual sewing stations are equipped with 
various sewing machines tailored to different garment assembly needs. The production floor lay-
out is strategically designed to optimize workflow and reduce unnecessary movement, essential 
for maintaining efficiency in a small-volume, custom production setting. 

In this study, the composition of the workforce, production assignments, and task completion 
times were carefully analysed. This analysis provided the foundational data for developing a 
worker-balancing algorithm tailored to the target company’s production system. The algorithm 
was designed to optimize task assignments by balancing workloads across the available work-
force, based on these real-time observations. 

Setting standard task time based on skilled workers 

Establishing precise standard task times is essential for optimizing production in custom garment 
manufacturing. This study set standard task times by observing the work of highly skilled domes-
tic experts with over 30 years of experience in specialized areas. The expert team included one 
worker dedicated to cutting, two specializing in both general and specialized sewing tasks, one 
assistant, and one focused on finishing. 

To ensure consistent measurement, each expert performed their task on five consecutive shirt 
cuts, all in the same design, allowing for accurate benchmarking. Task times were meticulously 
recorded for each shirt as a discrete unit of measurement. This approach not only reflects the high 
skill and efficiency of seasoned workers but also establishes a reliable baseline that accounts for 
the various specialized sewing operations involved. 

This method leverages the proficiency and speed of experienced workers to represent peak 
productivity levels, providing a strong framework for estimating maximum potential efficiency in 
shirt production. The resulting standard task times play a critical role in calibrating the worker-
balancing algorithm, ensuring it aligns with realistic, high-performance scenarios. 

Setting these standards also aids in streamlining operations and serves as a vital metric for 
evaluating production strategies, making them applicable to different levels of workforce exper-
tise across the industry. 

 

 
Fig. 1 Men’s formal slim shirt design 

 
 

 
Fig. 2 Custom-made men’s formal shirts factory 
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Development of worker-balancing algorithm for the production of custom-made garments 

The development of a worker-balancing algorithm tailored specifically for custom-made shirt pro-
duction marks a significant step forward in garment manufacturing efficiency. This process begins 
with defining several essential parameters: the type of task, the difficulty level of each task, and 
the conversion rules for assigning tasks to each worker. These parameters ensure the algorithm 
is customized to meet the specific requirements of custom shirt production. 

Built around these parameters, along with the standard task times established from empirical 
observations of skilled workers, the algorithm is designed to streamline task management across 
the production line. This structured framework allows for efficient task allocation that optimizes 
the workflow and maximizes resource use. 

To illustrate the practical application of the algorithm, it was tested with a five-person produc-
tion team. Each team member was assigned tasks aligned with both their individual skillsets and 
the overall production needs. This strategic allocation leverages the strengths of each worker, en-
hancing productivity and ensuring high-quality outputs. The successful implementation and ob-
served effectiveness of the algorithm underscore its potential to transform custom garment man-
ufacturing by aligning detailed task characteristics with worker capabilities. 

Simulation and verification of worker-balancing algorithm for custom-made garment production 

To validate the worker-balancing algorithm for custom-made shirt production, a simulation was 
conducted using a timed Petri net approach. This method is well-suited for modelling the complex 
dynamics of discrete-event systems such as custom garment production. For this study, GPEN-
Sim, a specialized tool for modelling and simulating discrete-event systems, was used to rigor-
ously test and evaluates the balance efficiency of the proposed algorithm [27]. 

During simulation, labor utilization—a key metric for assessing production efficiency—was 
closely monitored. Results from the algorithm’s performance were compared with those of the 
existing system, providing a direct efficiency benchmark. This comparative analysis demonstrated 
significant improvements in balance efficiency, reinforcing the algorithm's potential to enhance 
productivity and optimize resource use in custom-made garment production. The concrete evi-
dence gathered from this simulation strongly supports the adoption of this algorithm as a produc-
tivity-boosting tool in the industry. 

3.2 Development of the algorithm 

Standard process analysis of custom-made formal shirts 

The production process for custom-made, slim-fit formal shirts follows a standardized sequence 
of 43 tasks, as outlined in Fig. 3. Unlike in mass production, where cutting tasks are generally ex-
cluded from sewing process analyses, cutting is integral to custom production because it occurs 
with each individual order. In mass production, cuts are made in large batches, making individual 
cuts less relevant to the sewing process. However, custom shirt production requires unique cuts 
for each order, influencing the overall process flow. 

In this study, cutting is performed automatically using a laser cutter guided by digital patterns 
stored on a computer. Each custom shirt differs in size and fabric, so it is essential to assign a 
unique product number to each cut piece for identification and tracking. As each piece progresses 
through the assembly process, steps are included to verify matching product numbers, ensuring 
that all components belong to the same shirt. 

The machines used in production include four lockstitch machines, one double-felled seam ma-
chine, a button-sewing machine, a buttonhole machine, and an ironing machine. This range of 
equipment supports the varied and precise tasks required for assembling custom-made shirts.  
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Fig. 3 Standard process chart for custom-made men’s formal shirts manufactured on demand 

Results of setting standard task time based on skilled workers 

Standard task time represents the time required to complete a specific unit of work at an average 
pace. In this study, each step in the custom-made formal shirt production was segmented based 
on task characteristics, and the time needed for each task was measured and set as the standard. 
For a single shirt, the average task time across all processes is 3,130 seconds. A breakdown of 
average task times for each process is provided in Table 1. 

This segmentation and time setting allow for a realistic assessment of production efficiency 
and form the basis for the worker-balancing algorithm, aligning it with the precise demands of 
custom garment production. 
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Table 1 Task time, task type, and task level according to customized formal shirts standard process 
Process No. Process Equipment Task 

type 
Task 
level 

Task 
time 

0 Cut preparation PC A 1 83 
1 Laser cutting Laser cutting machine A 1 446 
2 Press interfacing Press B 1 249 
3 Iron cuffs, collar band, fly (1st) Iron B 1 175 
4 Press sleeve placket Press, Iron B 1 53 
5 Topstitch outer cuffs Lockstitch C 3 36 
6 Match embroidered cuffs Handwork C 3 8 
7 Label handling Hand work C 3 9 
8 Sew collar Lockstitch C 3 37 
9 Sew cuffs Lockstitch C 3 25 
10 Trim cuffs seam allowance Scissors B 1 34 
11 Trim collar seam allowance Scissors B 1 31 
12 Turn cuffs Iron B 1 18 
13 Turn collars Iron B 1 29 
14 Iron cuffs (2nd) Iron B 1 36 
15 Iron collars (2nd) Iron B 1 50 
16 Sew under front fly (R) Lockstitch C 3 23 
17 Sew label to side seam Lockstitch C 3 8 
18 Sew upper front fly (L) Lockstitch C 3 70 
19 Sew back dart Lockstitch C 3 38 
20 Sew back yoke Lockstitch C 3 27 
21 Sew shoulder line Lockstitch C 3 50 
22 Topstitch shoulder line Lockstitch C 3 70 
23 Match bundle by product number (1st) Hand work C 3 10 
24 Sew sleeve placket Lockstitch C 3 142 
25 Sew armhole on the bodice Lockstitch C 3 121 
26 Topstitch the armhole Lockstitch C 3 80 
27 Sew side seam and sleeve inseam Double felled seam stitch C 3 115 
28 Topstitch cuffs Lockstitch C 3 51 
29 Topstitch collar and band Lockstitch C 3 65 
30 Topstitch band bottom Lockstitch C 3 51 
31 Sew collar and band Lockstitch C 3 59 
32 Trim collar seam allowance (2nd) Scissors C 3 28 
33 Topstitch band upper line Lockstitch C 3 38 
34 Iron collar (3rd) Iron B 1 23 
35 Mark collar notch Hand work B 1 47 
36 Sew the hem Lockstitch C 3 46 
37 Move bodice bundle Hand work B 1 7 
38 Match bundle by product number (2nd) Hand work B 1 22 
39 Sew cuffs to sleeve Lockstitch C 3 88 
40 Sew collar to bodice Lockstitch C 3 137 
41 Remove loose threads Hand work B 1 99 
42 Match work sheet and sewn product Hand work B 1 22 
43 Make buttonholes Buttonhole D 1 181 
43 Sew buttons Button sewing D 1 93 

Definition of variables and rules of the worker-balancing algorithm  

The variables used in the worker-balancing algorithm include the task type and task level to define 
the processes of nature.  

The task type is determined by whether the nature of the process is clearly distinguished, re-
gardless of the task level. In other words, if there are “two types of tasks,” this means it is efficient 
for a worker to specialize in each task. The production of custom-made formal shirts in this study 
has four task types: cutting (A); assistant (B), including press interfacing, ironing, and handwork; 
sewing (C); and finishing (D), including making buttonholes and button sewing.  

The task level represents the degree of skill required in the process. The task level can be esti-
mated by considering the period of training and experience needed for the task to be performed. 
In sewing tasks, there are cases in which it is possible or not possible to switch between tasks, 
depending on the worker’s skill. In other words, if the highest task level of worker A is 3, worker 
A can perform all tasks 1, 2, and 3. However, if worker B's highest task level is 1, worker B can 
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only perform task 1. Therefore, tasks should be assigned to each worker considering the maxi-
mum task level each worker can perform. In this study, considering the classifications of the work-
ers’ task levels, it is assumed that task level 1 can be performed with two months of training or 
experience, task level 2 with ten years, and task level 3 with 20 years. The task levels of the pro-
cesses for custom-made formal shirt production, the target of this study, are set as follows: Cutting 
(A) = level 1; Assistant (B) = level 1; Sewing (C) = level 3; and Finishing (D) = level 1. Table 1 shows 
the types and levels of each task. 

Development of the worker-balancing algorithm  

In this study, an algorithm to optimize the production process were developed according to the 
number of workers based on the pre-data mentioned above for customized production assign-
ments and the conversion rules. The basic concept of the algorithm is to make the total task time 
divided by the number of workers (BPT: basic pitch time) closer to that of each worker’s task time. 

The algorithm proceeds as follows: calculate the BPT → determine the number of workers and 
the time per worker for the highest-level task → determine the number of workers and the time 
per worker for the second highest-level task → redistribute the times of workers for the highest-
level task and the times of workers for the second-highest-level task.  

In this algorithm, the number of workers and the time taken for the highest-level tasks are set 
first when allocating tasks to workers. This enables us to redistribute the work of a lower-level 
task to workers of highest-level tasks if the time of the low-level task worker is set larger than the 
highest-level worker’s time. This is because the highest-level task worker can perform the lower-
level tasks. Furthermore, assigning tasks to each worker is done to assign as many consecutive 
tasks as possible so that workers can memorize the tasks and perform them more efficiently. The 
algorithm is based on several assumptions, as shown below. The specific process is shown in Fig-
ure 3 which presents a comprehensive flowchart detailing the step-by-step process involved in 
the manufacturing of custom-made shirts. The diagram begins with the initial 'Cut preparation' 
phase, involving tasks such as laser cutting and the interfacing of various parts, setting the foun-
dational stage for the garment assembly. 

Basic assumptions for the worker-balancing algorithm  

1. The task type-level is divided into the following four categories: 

A-1 = Cutting; level 1, B-1 = Assistant; level 1 
C-3 = Sewing; level 3, D-1 = Finishing; level 1 

2. There are only two task levels (level 1 and level 3). 
3. The lowest task level (level 1) allows the task to be switched between workers, even if the 

task type is different. 
4. A sewing (level 3) worker (C-3) can perform Assistant (level 1) tasks (B-1). 

Worker-balancing algorithm process  

 Pseudo code Note 
   

1.BPT calculation BPT = tT / nT tT is total process time; 
nT is total number of workers 

 Calculate the total task time by task type (tA, tB, tC, tD).  
     

2. Determine number of 
workers (nC) for C-3 task 

nC = ceil(tC / BPT) 
 

nC is umber_of_workers_C3 
required for the highest-level 
task; 
tC is total task time of the 
highest-level task (C-3) 

 
   

3. Determine task time of each C-3 worker 
 

  
3-1. Set the task time (tC1) of the first worker (C1)   
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tmC1 = tC / nC 
 

tmC1 is mean task time per 
worker for the highest-level 
task; 
nC is number_of_workers_C3 

 

For each task in C-3 tasks: 
Calculate endTime = currentTime + task.duration 
If endTime is close to tmC1: 

If task.group == gC1a: 
Add task to list gC1a 

Else if task.group == gC1b: 
Add task to list gC1b 

Update currentTime to endTime 

Add the time of C-3 tasks in 
order, then extract two kinds 
of task groups (gC1a, gC1b) 
close to tmC1 

 

 

 
Set minTimeDiff = infinity 
Set selectedGroup = null 
 
For each task in gC1a: 
Calculate timeDiff = abs(task.endTime – tmC1) 
If timeDiff < minTimeDiff: 

Set minTimeDiff = timeDiff 
Set selectedGroup = gC1a 

 
For each task in gC1b: 

Calculate timeDiff = abs(task.endTime – tmC1) 
If timeDiff < minTimeDiff: 

Set minTimeDiff = timeDiff 
Set selectedGroup = gC1b 

Return selectedGroup 

 
 
 
Between gC1a and gC1b, 
select the group with the 
smaller time difference, 
where tmC1 
 
selectedGroup = gC1 

3-2. Set the task time (tC2) of the second worker (C2) 

3-2-1. If last: tC2 = tC – tC1  
3-2-2. 

 
If not last: 
tmC2 = (tC - tC1) / nRC2 

nRC2 is number of workers, 
except C1; 
tmC2 is mean time of one 
worker to determine second 
task C worker’s time 

 

For each task in remaining C-3 tasks except Cg1: 
If task.group != Cg1: 
Calculate endTime = currentTime + task.duration 
Update currentTime to endTime 
 
Set minTimeDiff = infinity 
Set selectedGroup = null 
 
For each task in gC2a: 
Calculate timeDiff = abs(task.endTime – tmC2) 
If timeDiff < minTimeDiff: 
 
Set minTimeDiff = timeDiff 
Set selectedGroup = gC2a 
 
For each task in gC2b: 
Calculate timeDiff = abs(task.endTime – tmC2) 
If timeDiff < minTimeDiff: 
Set minTimeDiff = timeDiff 
Set selectedGroup = gC2b 
 
Return selectedGroup 

Add the time of the remaining 
C-3 tasks, except Cg1, in 
order, then extract two kinds 
of task groups (gC2a, gC2b) 
close to tmC2. 

 
 
 
Between gC2a and gC2b, 
select the group with the 
smaller time difference, with 
tmC2 
 
Name the selected group gC2. 
 

 

   3-3. Set the task time (tC3) of the third worker (C3)  

 If last: tC3 = tC – tC1 – tC2  
 If not last: Determine tC3 in the same manner as in 3-2.  
   

4. Determine number of workers for level 1 tasks (A-1, B-1, D-1) 



Han, Park 
 

248 Advances in Production Engineering & Management 20(2) 2025 
 

 
 

nR = nT – nC (nR is number of remaining 
workers, except C-3 workers) 

   
5. Determine time of each level 1 worker 
 

5-1. Set the time of the first worker (A1) among the nR 

 tR1 = tT – tC 
tmR1 = tR / nR 

Calculate the mean task time 
per worker for the highest-
level task 

 

For each level 1 task: 
Calculate endTime = currentTime + task.duration 
If endTime is close to tmR1: 

If task.group is gR1a: 
Add task to list gR1a 

Else if task.group is gR1b: 
Add task to list gR1b 

Update currentTime to endTime 
 
For each task in gR1a: 
Calculate timeDiff = abs(task.endTime – tmR1) 
If timeDiff is smaller than minTimeDiff: 

Set minTimeDiff to timeDiff 
Set selectedGroup to gR1a 

 
For each task in gR1b: 
Calculate timeDiff = abs(task.endTime – tmR1) 
If timeDiff is smaller than minTimeDiff: 

Set minTimeDiff to timeDiff 
Set selectedGroup to gR1b 

 
Add the time of the level 1 
tasks in order, then extract 
two kinds of task groups 
(gR1a, gR1b) close to tmR1 
 
 
 
 
Between gR1a and gR1b, 
select the group with the 
smaller time difference, with 
tmR1 
 
 
Name the selected group gR1 

5-2. Set the time of the second worker (A2) among the nR 
5-2-1. If last: tR2 = tR – tA1  
5-2-2. If not last, repeat the method used in 5-1. . 

 

tR2 = tT – tC – tA1 
tmR2 = tR2 / nR2 

Add the time of the level 1 tasks in order, then extract 
two kinds of task groups (gR2a, gR2b) close to tmR2 

Between gR2a and gR2b, select the group with the 
smaller time difference, with tmR2 
Name the selected group gR2 

 

5-3. Set the time of the third worker (A3) among the nR1 
5-3-1. If last: tA2 = tR1 – tA1 – tA2  
5-3-2. If not last, repeat the method used in No. 5-1.  

   

6. Decide whether to assign additional tasks to the highest-level task workers 

 

If task time of all C-3 workers > task time of B-work 
workers: 
No task variation 

Else if any C-3 worker's task time < task time of B-work 
workers: 
Perform task variation 

 

 

Find the B-1 worker (Rx) with the largest task time 
Find the C-3 worker (Cx) with the smallest task time 
 
Transfer the task of Rx to Cx 
 
Calculate the midpoint between tBx and 
tCx: midpoint = (tBx + tCx) / 2 
 
Find the task group among tasks performed by Rx 
closest to midpoint 
Assign this task group to Cx 

Transfer the task of the B-1 
worker with the largest task 
time (Rx) to the C-3 worker 
with the smallest task time 
(Cx) 

 
Among the tasks performed 
by Rx, assign the task group 
closest to (tBx – tCx) / 2 to Cx. 
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4. Results and discussion 
4.1 Applying the worker-balancing algorithm 
The proposed algorithm simulated a production assignment process for five workers (i.e., the 
same number of workers as the target manufacturer). 

In this study, the algorithm is applied to produce custom-made formal shirts. The resulting 
production assignment and balance efficiencies are presented in Table 2. In addition, the results 
of production assignments using the proposed algorithm for four, six, and seven workers are 
shown in Table 3. Furthermore, the results were compared for five workers currently used by the 
shirt manufacturer and the results for five workers based on the proposed algorithm. The results 
show that the balance efficiency improved from 69.9 % to 83 % shown in Table 4.  

The production assignment process using the worker-balancing algorithm for five workers is 
as follows:  

1. 𝐵𝐵𝐵𝐵𝐵𝐵 =  3130
5

=  626       tA = 529, tB = 895,   tC = 1432, tD = 274 

2. nC1 =  
1432
625  =  2.3 ≅  2  

3. tmC =
𝑡𝑡𝑡𝑡
𝑛𝑛𝑛𝑛 =  

1432
2 = 716 

3-1. gC1a process = 5–9, 16–25 process →  tgC1a(time of gC1a) = 674 
  →   dt = tgC1a – tmC1 = 674 – 716 = –84 

 
gC1b = 5–9, 16–26 process →  tgC1b(time of gC1b) = 754  

 →  dt = tgC1b – tmC1 = 754 – 716 = 76 
 →  Select tC1b in which dt is smaller 
 →  tC1 = 754 

3-2. Set C2 worker time:  
tC2 = tC – tC1 = 1432 – 754 = 678 

4. nR =  nT – nC =  3 
5. Set time of A1 worker (first of three workers) 

5-1. tR = tT(3130) – tC(1432) = 1698 
tmR1 = tR/ remaining workers = 1698 / 3 =566 

  gR1a = 0–1 = 557 
  gR1b = 0–1, 4 =582 

Select tR1a, where the difference with tmR1 is smaller → tR1 = 557 
5-2. Set time of A2 worker (second of three workers) 

tR2 = tT(3130) – tC(1432) – tA1(557) = 1141 
tmR2 = tR2 / remaining workers = 1141 / 2 = 570.5 

gR2a = 2–12 = 560 
gR2b = 2–13 = 589 

5-3. Set time of A3 worker (last of three workers) 
tA31 = tT(3130) – tC(1432) – tA1(557) – tA2(560) = 581 

6. The C-3 workers’ time is greater than the level 1 workers’ time. Thus, terminate the production 
assignment process  

Table 2 Results of production assignment for the five-worker team 
Worker Task type level Task number Task time (s) 
A1 A-1 0–1 557 
B1 B-1 2–4, 10–12 560 
C1 C-3 5–9, 16–26 754 
C2 C-3 27–33, 36, 39–40 678 
D1 D-1 13–15, 34–35, 37–38, 41–42 43–44 581 

Total 3130 
BPT 626 

Balance efficiency 83 % 
Notes: 
Balance efficiency = 3130 / (754 × 5) × 100 = 83 % 
A-1: Cutting (level 1); B-1: Assistant (level 1); C-3: Sewing (level 3); D-1: Finishing (level 1) 
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Table 3 Results of production assignment using the proposed algorithm by number of workers 
             Production assignment using the proposed algorithm 
Number of workers 4 5 6 7 
Net working time (s) 3130 3130 3130 3130 
BPT (s) 782.5 626 521.7 447.1 
Bottleneck time (s) 850 754 557 553 
Balance efficiency (%) 92.1 83 93.6 80.8 

 
Table 4 Comparison of production assignment in use and proposed algorithm for five workers 

 Production assignment based on the 
proposed algorithm 

   Current production assignment 

Number of workers 5 5 
Net working time (s) 3130 3130 
BPT (s) 626 626 
Bottleneck time (s) 754 895 
Balance efficiency (%) 83 69.9 

 
When balance efficiency increases from 69.9 % to 83 %, the production time becomes 1.19 

times faster, allowing for 1.19 times more production output within the same timeframe. Addi-
tionally, as production time decreases, the labor cost can be reduced since less time is required to 
produce the same quantity.  

4.2 Simulation and verification of worker-balancing algorithm for custom-made garment produc-
tion 
The Petri net model of this sewing process is shown in Fig. 4. This graphical representation helps 
visualize the dynamic interactions and dependencies within the production line. It includes mul-
tiple nodes and transitions, representing the various tasks, decision points, and workflow se-
quences in the custom-made shirt manufacturing process. 

The simulation conditions used to evaluate the worker-balancing algorithm are as follows: 
• number of workers: 4, 
• input lot size: 5, 
• input interval: 50 min, 
• operation time: 2400 min, 
• task assignment scheduling: FIFO (First-In, First-Out). 

 
Fig. 4 Petri net model of the production process of custom-made shirts  

The simulation results presented in Table 5 provide data on: 

• the number of task executions per station, 
• total time spent per station, 
• labor utilization percentage, 
• resource usage and cost metrics. 
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However, the cost-related outputs show a reporting issue: both “Sum resource usage costs” 
and “Sum working costs” appear as NaN% of total. 

This anomaly was caused by either zero-initialized values or incomplete entries in the simula-
tion’s cost parameter fields. As a result, the simulation software (GPEN-Sim) was unable to com-
pute valid percentages for cost utilization. These figures were excluded from the performance 
analysis and do not affect the primary simulation results related to labor utilization and balance 
efficiency. 

Despite this, the main result is reliable. The balance efficiency achieved through the proposed 
production assignment (with 4 workers) is 92.1 %, meaning the workload was nearly equal 
among all workers. By contrast, in mass production systems—where one worker is assigned to 
one fixed task—the balance efficiency often correlates closely with machine utilization only. 

Here, due to multi-task assignments and potential wait times, small differences can exist. None-
theless, the labor utilization calculated from the simulation was 90.2 %, which is very close to the 
algorithm’s predicted balance efficiency. The difference of only 2.1 % supports the validity of the 
proposed approach. 

Table 5 Simulation results using "Timed Petri net modelling" and "GPEN-Sim”  
Resource usage summary  Line efficiency and cost calculations 

 Total  
occasions 

Total time  
spent (s) 

 Number of labor group K = 3 
Total number of labors K = 4 

LS1 222 2327  Total operation time (s) 2400 
Ls2 157 2079  Labor time (s) 9600 
Ls3 210 4251  Total time at stations (s) 8657 

    Utilization of labors 90.1771 % 
    Sum resource usage costs 0 (NaN% of total) 
    Sum working costs 0 (NaN% of total) 

5. Conclusion 
In conclusion, this study presents a novel approach to managing the production of custom-made 
garments through the development of a worker-balancing algorithm tailored to small-batch man-
ufacturing environments. By analysing key variables such as task duration, worker skill level, and 
task complexity, the algorithm effectively distributes workloads to optimize production efficiency. 
When applied to a five-worker team, the algorithm demonstrated a notable improvement in bal-
ance efficiency—from 69.9 % to 83 %. Additional simulations using a Petri net model confirmed 
the reliability of this result, with labour utilization rates closely aligning with the computed bal-
ance efficiency, showing a margin of error of only 2.1 %. While this study focused on men’s formal 
shirts, the structure of the algorithm is flexible enough to extend to other garment types, such as 
jackets, pants, and dresses. 

There are, however, several limitations. The current algorithm assumes static conditions, such 
as fixed worker availability, consistent task durations, and no production interruptions. It does 
not yet address mid-shift changes in worker availability, machine breakdowns or downtime, ur-
gent rush orders or real-time disruptions, rework cycles or error corrections, or the involvement 
of temporary or partially trained workers with limited task capabilities. These limitations con-
strain the algorithm’s adaptability in dynamic production environments. To address these chal-
lenges, future studies should explore integrating metaheuristic optimization techniques (e.g., ge-
netic algorithms or swarm intelligence) to discover globally optimal worker-task configurations. 
Real-time scheduling systems capable of dynamic task reassignment in response to operational 
disruptions should also be considered. Stochastic modelling of machine downtime and worker 
performance variability would improve robustness. User-friendly software tools based on the al-
gorithm would further support its adoption in industrial practice. By extending this work in these 
directions, manufacturers can achieve greater flexibility and resilience in custom garment pro-
duction, aligning with the industry’s transition toward mass customization and sustainable prac-
tices. 
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Future research should expand the algorithm's application to a wider range of custom gar-
ments with varying task complexities and workforce structures. Additionally, incorporating pa-
rameters such as machine availability and individual performance variation could enhance the 
algorithm’s effectiveness across diverse manufacturing settings. Developing user-oriented soft-
ware based on this algorithm would further facilitate its practical deployment, enabling more ef-
ficient scheduling and resource allocation. 
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